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The goal of this notes is to serve as a roadmap to navigate introductory courses in mathemat-
ical probability and statistics. The notes follow a practical approach. While trying to present
abstract concepts rigorously, the main goal is to help articulate teaching and learning around
applications. With this approach in mind, the exposition keeps the theoretical side as simple as
possible, while trying to enrich discussions with a variety of motivating examples. The idea is
that instructors can largely focus on working out examples and discussing their takeaways with
students. The intent is to help develop sound understanding of difficult concepts through plenty
of opportunities to practice. Definitions and demonstrations are presented in ways such that,
most of the times, students wish to read them just for consultation purposes. In consonance, these
notes should not be regarded as particularly suitable for courses more oriented toward thorough
philosophical discussions on mathematical probability abstract concepts, or its foundations.

The only mathematical prerequisites are knowledge of typical first-year college calculus,
including sums of infinite series, differentiation, and single and multiple integration.

Throughout its chapters, the notes introduce first the main notions briefly and then jump right
away into a series of solved examples that deal closely with such notions. At the end of each
chapter, a set of unsolved problems aims at complementing the presented topics. I intentionally
use a concise cookbook style so that the notes can be dynamically navigated. Several parts of
the notes—such as sections, solved examples, or results—are labelled using (steaming) coffee
cups. Following requirements of coffee intake, the level of difficulty, or abstractness, goes
from the one-coffee-cup (the easiest, or more practical) to the three-coffee-cup (the hardest,
or more abstract) category. Depending on the course level, instructors might want to focus on
some parts while skipping others. I personally would view one-coffee-cup content as suitable
for undergraduate courses, whereas three-pepper material would perhaps suit better graduate
courses.

These notes have benefited enormously from my own graduate teaching at CIDE during
many years. I wish to thank many students who have helped with their patience and comments
to improve these notes.

The LaTex class used to typeset these notes is based on the The Legrand Orange Book LaTex

class.
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1. Probability Models

1.1 Introduction: Random Phenomena [K]
In a variety of populations, scientists try to formulate general laws about outcomes of either
natural phenomena or designed experiments. A typical law has the form:

“if a certain set B of circumstances happens, then a set of outcomes A occurs.”

Some of such laws appear in chemistry, physics, or the social sciences; for instance, the law
of conservation of mass, the law of gravity, or the low of demand. Suppose that we are aware
that the set of circumstances contained in B have happened. Then, if the outcomes in A occur
inevitably, we say that A is certain, or sure. If the outcomes in A can never occur, then we say
that A is impossible.

Intermediate cases appear if the outcomes in A may, or may not, occur whenever the circum-
stances in B happen. Unlike certain and impossible sets of outcomes, the presence of randomness
implies that the set of circumstances in B do not account for all the necessary and sufficient
conditions for the outcomes in A to happen. In such cases, we are uncertain about the occurrence
of A and thus would like to know how likely is that the outcomes in A occur. The main concern
of probability theory is to assess scientifically the likelihood of occurrence of such outcomes in
A. When we face this sort of intermediate cases, we say that we are in the presence of a random

phenomenon, or random experiment, and A is said to be a random event.

In addition to assessing probabilities, by providing systematic means to model random exper-
iments, probability theory lies the statistical foundations to draw inferences from populations.
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Probability theory thus provides a set of tools that help us achieve a valuable two-way scientific
goal when dealing with random phenomena or experiments. In short, it allows scientists both
to (i) construct rigorously theoretical (deductive) models to investigate problems that deal with
uncertainty and (ii) propose solid empirical (inductive) exercises to raise research questions and
test the implications of theoretical models.

At first glance, it seems daunting to make general statements about random phenomena and
the likelihood of occurrence of uncertain outcomes. However, repetition of random phenomena
shows that many of such phenomena exhibit some statistical regularities that allows us to study
them using a systematic approach. For random phenomena that exhibit certain regularities over
repetition, it is possible to estimate the odds of occurrence of event A by using certain laws,
which are referred to as probabilistic or stochastic. Stochastic laws have the general structure:

“if the set B of circumstances happens repeatedly n times,
then the set of outcomes A occurs m times out of the n repetitions.”

Given this structure, if we consider that n→ ∞, then “the probability that event A occurs, under
the set of conditions B” can be naturally thought of as the fraction m/n.

Now, how do we assign probabilities of occurrence to random events? Historically, there
have been two major approaches to study random phenomena, the relative frequency method and
the classical method. The relative frequency method has a clear empirical motivation and it relies
upon observation of occurrence of the event A under a large number of repetitions of the set of
circumstances in B. Then, one would simply count the number of times that event A has happen
and use the ratio m/n as an asymptotic approximation of its probability of occurrence. The
classical method, whose introduction is credited to Laplace [1814], also computes the probability
of the event A using the fraction m/n. However, to that logic of the fraction m/n, it adds the
concept of equal likelihood, which is taken as a primitive of the model. Under this approach,
random events are regarded as the aggregation of several mutually exclusive (or disjoint), and
equally likely, elementary events. Then, the probability of the event of interest is obtained as the
sum of the individual probabilities of the elementary events.1 In the 20th century, Kolmogorov
[1933] proposed the axiomatic approach, which is consistent both with the relative frequency
and the classical methods. More importantly, the axiomatic approach allows for a systematic

1In his celebrated essay (Laplace [1814]), Pierre-Simon Laplace wrote: “The theory of chance consists in
reducing all the events of the same kind to a certain number of cases equally possible, that is to say, to such as we
may be equally undecided about in regard to their existence, and in determining the number of cases favorable
to the event whose probability is sought. The ratio of this number to that of all the cases possible is the measure
of this probability, which is thus simply a fraction whose numerator is the number of favorable cases and whose
denominator is the number of all the cases possible.”
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and rigorous treatment of a very general set of random phenomena. The axiomatic approach
provides the foundations of modern probability theory and it is at the heart of ideas presented
and discussed in these notes.

1.2 Sample Spaces, Events, and Probability [K]
To deal with possible outcomes of random phenomena or experiments, it is useful first to consider
some basic relations and operations for sets of elements.

Observation 1.1 — Set Relations. Take two sets A,B. Then:
1. We say that A is a subset of B, A⊆ B, whenever (i) ω ∈ A implies ω ∈ B;
2. We say that sets A and B are equivalent, A = B, whenever (i) ω ∈ A implies ω ∈ B (that

is, A⊆ B) and (ii) ω ∈ B implies ω ∈ A (that is, B⊆ A);
3. We say that A is a strict subset of B, A⊂ B, whenever (i) ω ∈ A implies ω ∈ B and (ii)

there is some ω ∈ B with ω /∈ A, that is, A⊆ B and A 6= B;

B

A

(a)

B

A

(b)

Figure 1.1: Set inclusion. (a) A⊂ B with A 6= B, (b) A * B and B * A.

Observation 1.2 — Set Operations. Given a set Ω and two subsets A,B⊆Ω , then:
1. The cross product of A and B, A×B, is the set of all pairs such that the first entry is an

element of A and the second entry is an element of B, A×B = {(a,b) : a ∈ A,b ∈ B};
2. The union of A and B, A∪B, is the set of all elements that belong to either A, B, or both:

A∪B = {ω ∈Ω : ω ∈ A or ω ∈ B};
3. The intersection of A and B, A∩B, is the set of all elements that belong to both A and B:
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A∩B = {ω ∈Ω : ω ∈ A and ω ∈ B}. Moreover, the sets A and B are disjoint if the do
not have any element in common, that is, if A∩B = /0;

4. The subtraction of set B from set A, A\B, is the set of all elements that belong to A and
do not belong to B: A\B = {ω ∈Ω : ω ∈ A or ω /∈ B};

5. The complement of set A—with respect to a reference set Ω—, Ac, is the set of all
elements that do not belong to A—and still belong to Ω :
Ac = {ω ∈Ω : ω /∈ A}= Ω \A.

A B
A∪B

(a)

A B

A∩B

(b)

A B

A\B

(c)

Ω

Ac

A

(d)

Figure 1.2: Basic set operations. (a) A∪B, (b) A∩B, (c) A\B, (d) Ac = Ω \A.

When dealing with a random phenomenon or experiment, we would like to consider a space
of random events that allows us to consider as many, and as varied, as possible sets of outcomes
of uncertainty. In particular, we begin by proposing an arbitrary nonempty set Ω of elementary

events ω . There is no fix rule to propose the set Ω and the possible outcomes of a given random
experiment can be translated into elementary events in different ways. To obtain a clean model,
it is advisable that any possible outcome of the experiment be included in our sample space.
Also, it is convenient that each elementary event has enough detail so as to distinguish between
all outcomes of interest. Therefore, it turns quite useful to take the approach of considering
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each elementary event ω ∈Ω as a complete and exhaustive description of a possible outcome of
uncertainty.2 The set Ω of all possible elementary events ω of a random phenomenon is known
as sample space.

� Example 1.1 [K] Consider an experiment in which a coin is flipped twice. In principle, there
are several ways of proposing a sample set Ω that captures the outcomes of this experiment.
First, we could consider the number of times that Heads shows up. In this case, Ω = {0,1,2}.
Secondly, we could consider the particular outcomes, independent of the order in which the
outcome appears. Then, we would have Ω = {{H,H},{H,T},{T,T}}. However a most
complete and exhaustive description of a possible outcome would consider particular outcomes,
as well as the order in which they appear. This consideration would give us the most convenient
sample set to model our experiment. We would have Ω = {(H,H),(HT ),(T,H),(T,T )}. �

Sample sets Ω can be countable, whenever we can think of a one-to-one map from the set Ω

to a set of integers. Of course if Ω is finite, then it is also countable. Sample sets Ω can also be
uncountable, whenever such a one-to-one map from Ω to a set of integers does not exist and
we must then resort to associate Ω with a continuum real set, such as the interval [0,1]. At a
technical level, the mathematical treatments required for countable and uncountable sample sets
are different. However, the underlying intuitions are similar.

� Example 1.2 [K] Suppose that we consider the experiment of flipping a coin three times.
Then, a natural way of proposing the sample space would be

Ω = {(H,H,H),(T,H,H),(H,T,H),(H,H,T ),(T,T,H),(T,H,T ),(H,T,T ),(T,T,T )},

a countable finite set. Now, suppose that we consider the experiment of the quality the items
produced in a certain manufacturing process with no determined lifetime. Then, we can consider
that an elementary event is an infinite sequence ω = (ω1,ω2, . . .) where each ωi ∈ {G,D},
for i = 1,2, . . . , with G =“good quality item” and D =“defective item.” In this case, Ω =

{G,D}×{G,D}× · · · = {G,D}∞ is countable infinite. Finally, suppose that we consider the
random phenomenon of the lifetime of a washing machine. Then, it would be natural to begin
with Ω = [0,+∞). In this case, Ω is uncountable. �

A random event is formally identified as a subset A of the set Ω , A⊆Ω . After proposing a
set Ω of possibles outcomes of the random phenomenon, we would like then to add a family

2In the social sciences, elementary events that fit into such a description are also known as states of the world or
states of nature.
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F of subsets of Ω , or events, that satisfies certain desirable properties. To do so, we must keep
in mind that while we will be interested in assessing probabilities of occurrence for random
events in F , subsets which do not belong to F will be out of what the proposed model can
say. In intuitive terms, random events can be described simply by using everyday sentences.
Then, given events/sentences like “A” and “B,” it makes sense to connect such sentences in
order to form new sentences like “A and B,” “A or B,” “A but not B, or not “just not B.” In
consequence, it is desirable that the family of events F be closed under the set operations of
intersection, union, and complement. Of course, such a family F should also include the entire
set of elementary events Ω . Finally, if we wish to form sentences using arbitrary, perhaps infinite,
sequences of other sentences, then it is useful to add closure under (arbitrary) countable unions
and intersections to our list of desiderata. With these motivations in mind, let us consider the
following notion.

Definition 1.1 A σ -algebra on Ω is a non-empty family F of subsets of Ω such that
1. A ∈F implies Ac ∈F ;
2. A1,A2, . . . ,An, · · · ∈F implies ∪∞

n=1An ∈F .
Moreover, if F satisfies it is closed only under finite unions, we say that F is an
algebra

From now on, we will want that any set of random events be formally described by a σ -
algebra. Then, after associating a σ -algebra F to a set of elementary events Ω , we will refer
to the pair (Ω ,F ) as a measurable space. Of course, the particular σ -algebra that we select
will depend on the problem at hand. A couple of consequences from the introduced notion of
σ -algebra are worth mentioning. First, notice that any σ -algebra contains the empty set under
our definition. Thus, it follows that its complement, /0c = Ω , must also belong to any σ -algebra.
The event /0 if often referred to as the impossible event while the event Ω is usually known as the
sure event. Secondly, we can make use of a set-operation property, known as the de Morgan’s

laws, to exchangeably use either the requirement that a σ -algebra must be closed under arbitrary
unions or that it must be closed under arbitrary intersections. In particular,

Observation 1.3 — De Morgan’s Laws. Given a sample set Ω and a sequence of sets
A1,A2, . . . ,An, · · · ⊆Ω , then

∪∞
n=1An = (∩∞

n=1Ac
n)

c and ∩∞
n=1 An = (∪∞

n=1Ac
n)

c .

In summary, using set operations, the idea of σ -algebra enables us to regard as random events
some descriptions that are formed used other events/sentences. Then, we will be able to assign
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probabilities to complex descriptions which can be formed using much simpler ones.

� Example 1.3 [K] We can assign probabilities to events/sentences such as:

1. Ac=“A does not occur;”
2. A∩B=“both A and B simultaneously occur,”
3. A∪B=“either A, or B, or both, occurs,”
4. (A∩Bc)∪ (B∩Ac)=“either A or B occurs, but not both of them simultaneously,”
5. A∩B = /0=“A and B are mutually exclusive,”
6. A\B = A∩Bc=“A occurs but B does not occur,”
7. (A∪B)c=“neither A nor B occur.”

�

� Example 1.4 [KK] To see why it is important that a σ -algebra be closed under arbitrary
(perhaps, an infinite number of) unions (or intersections), suppose that a die is rolled arbitrarily
many times. Then, we would naturally consider the sample set Ω = {1, . . . ,6}×{1, . . . ,6}×
·· ·= {1, . . . ,6}∞. Suppose that we want to study the event “number 2 comes up in the ith roll of
the die”. Then, we should certainly choose a σ -algebra on Ω with the requirement that it must
contain all sets of the form

Ai = {(ωi)
∞
i=1 ∈Ω : ωi = 2} , for each i = 1,2, . . . . (1.1)

Now, the event B =“in neither the second nor the third roll number 2 comes up” can be described
as B =

{
(ωi)

∞
i=1 ∈Ω : ω2 6= 2,ω3 6= 2

}
= Ac

2∩Ac
3. Then, such an event B is included in a σ -

algebra that contains the sets of the form in Eq. (1.1).. Similarly, the events “number 2 comes
up at least once through the rolls,” which can be described by ∪∞

i=1Ai, and “each roll results in
number 2 coming up,” which can be described by {(2,2, . . .)}= ∩∞

i=1Ai, are events that belong
to a σ -algebra that contains the sets of the form in Eq. (1.1). �

1.2.1 The σ-algebra generated by a family of sets [KKK]

Given the requirements that a σ -algebra must satisfy, we observe that most sets of elementary
events admit multiple σ -algebras that fit into Definition 1.1. The choice of a σ -algebra is not
always obvious. Depending on the application at hand, we might want to choose our working
σ -algebra very carefully. To see this, notice that the simplest σ -algebra of any set of elementary
events Ω is { /0,Ω}. Of course, this σ -algebra rules out almost all random events of interest in
most applications. On the other extreme, the largest possible σ -algebra on Ω is the family of
all subsets of Ω , known as the power class 2Ω . By choosing the power class 2Ω , we make sure
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not to lose any random event from consideration. However, the size of the family 2Ω increases
exponentially with the the size of the set Ω . When Ω has an infinite countable number of
elementary events, or when it is continuum, the family of events 2Ω can be simply too large for
many applications. As mentioned earlier, even most finite sets Ω admit multiple σ -algebras that
can be ordered “in size” according to set inclusion:

{ /0,Ω} ⊆F1 ⊆F2 ⊆ ·· · ⊆Fn ⊆ . . .2Ω .

If Ω is countably infinite, then we end up with an infinite sequence {Fn}∞

n=1 of σ -algebras,
ordered by set inclusion. If Ω is a continuum, then we end up with an ordered set of σ -algebras
{Fn : n ∈ N}, where N is a continuum. Then, how should we choose the most appropriate
σ -algebra for a set of elementary events? A practical approach would be the following. Starting
with a family A of subsets of Ω—which in fact does not need to be a σ -algebra of Ω in itself—,
we could search for a family of subsets of Ω that contains A , such that it is a σ -algebra on Ω ,
and such that it is the smallest one with respect to set inclusion. This approach is captured by the
notion of σ -algebra generated by a family of sets.

Definition 1.2 The σ -algebra generated by the family of sets A of a non-empty set Ω is the
family of sets

σ(A ) =
⋂

n∈N

{
Fn ⊆ 2Ω : for each n ∈ N, Fn ⊇A is a σ -algebra on Ω

}
.

The following theorem establishes that, for a family of sets A of Ω , σ(A ) is in fact a σ -algebra
on Ω and, in addition, it provides a very useful implication for the σ -algebra generated by a
family of sets A that is included in some σ -algebra F .

Theorem 1.1 [KKK] Given a nonempty family A of subsets of a nonempty set Ω , σ(A )

satisfies:
(i) σ(A ) is a σ -algebra on Ω ;
(ii) A ⊆ σ(A );
(iii) if A ⊆F and F is a σ -algebra on Ω , then σ(A )⊆F .

Proof of Theorem 1.1. (i) First, take A∈ σ(A ), then A∈Fn for each Fn⊇A and each n∈N.
Since each Fn is a σ -algebra on Ω , we have that Ac ∈Fn for each Fn ⊇A and each n ∈ N.
Therefore, Ac ∈ σ(A ). Second, take a sequence {An}∞

n=1 ⊆ σ(A ), then {An}∞

n=1 ⊆Fn for each
Fn ⊇A and each n ∈ N. Since each Fn is a σ -algebra on Ω , we have that ∪∞

n=1An ∈Fn for
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each Fn ⊇F and each n ∈ N. Therefore, ∪∞
n=1An ∈ σ(A ). (ii) The result follows directly

from the definition of σ(A ), taking into account the set operations of inclusion and intersection.
(iii) Take a σ -algebra F on Ω such that F ⊇A . Then, it must be the case that F = Fn for
some n ∈ N so that σ(A )⊆F .

1.2.2 Borel σ-algebras on Euclidean spaces [KKK]
In many applications where outcomes are described by real numbers, it is usual to choose a
very particular generated σ -algebra, known as the Borel σ -algebra. To present the approach
most commonly used to construct such a σ -algebra, we need first to introduce another family of
subsets, which are of crucial importance in real analysis and probability.

Definition 1.3 A topology on a set Ω is a family of subsets τ of Ω that contains the empty
set and the set Ω itself, and such that it is closed under finite intersections and under arbitrary
(not necessarily countable) unions. A generic element of a topology on a set is referred to as
an open set in such a family of sets.

Notice that a σ -algebra on a countable set is also a topology on that set but the converse is
not true. To see this, consider the following example.

� Example 1.5 [KKK] Take the set Ω = {a,b,c,d} and its family of subsets

γ = { /0,{a} ,{a,d} ,{b,c} ,{a,b,c,d}} .

We have that γ is not a σ -algebra on Ω since, for instance, {a}c = {b,c,d} /∈ γ . Furthermore, γ

is not a topology on Ω either since, for instance, {a}∪{b,c}= {a,b,c} /∈ γ . We can add one
extra element to γ so that τ = γ ∪{a,b,c} is indeed a topology on Ω . However, τ is still not a
σ -algebra on Ω . However, if we look for the σ -algebras generated, respectively, by γ and τ , we
obtain

σ(γ) = σ(τ) = { /0,{a} ,{a,d} ,{b,c} ,{a,b,c,d} ,{a,b,c} ,{b,c,d} ,{d}} .

�

Definition 1.4 Given a sample set Ω and a topology τ on Ω , the Borel σ -algebra associated

to the space (Ω ,τ) is the σ -algebra generated by the family of sets τ , σ(τ). The generic
elements of a Borel σ -algebra are commonly known as Borel sets.

Notice that the notion of Borel σ -algebra depends on the chosen topology τ . When the set of
elementary events Ω is a subset of some Euclidean space, it is common to choose the Euclidean
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topology as the topology of reference to generate the corresponding Borel σ -algebra. In this
case, we usually want to begin using the notion of neighborhood as a primitive to propose the
Euclidean topology.

Definition 1.5 A metric on a set Ω is a function d : Ω ×Ω → R such that
(i) d(ω,ω ′)≥ 0 for each ω,ω ′ ∈Ω and d(ω,ω ′) = 0 if and only if ω = ω ′;
(ii) d(ω,ω ′) = d(ω ′,ω) for each ω,ω ′ ∈ A;
(iii) d(ω,ω ′′)≤ d(ω,ω ′)+d(ω ′,ω ′′) for each ω,ω ′,ω ′′ ∈Ω .

Then, the Euclidean metric in Rn is given by d(ω,ω ′) = +
√

∑
n
i=1(ωi−ω ′i )

2.

The Euclidean metric is an intuitive metric that simply gives us the shortest geographical
distance between two points—that is, the distance according to a straight line that connects
the points. Given a number ε > 0, the set Bd(ω,ε) = {ω ′ : d(ω,ω ′) < ε} is known as the
ε-neighborhood (or neighborhood of size ε) centered at ω .

Definition 1.6 The Euclidean topology on Rn, τRn , is the family of subsets A of Rn such that
if ω ∈ A, then there exists some ε > 0 satisfying Bd(ω,ε) ∈ A.

Then, given a set Ω ⊆ Rn, the Borel σ -algebra on Ω , is the generated σ -algebra σ(τΩ ).
We will use BΩ to denote the Borel σ -algebra on Ω , for any set Ω ⊆ Rn.

The following examples illustrate that relatively simple families of sets of the real line can be
alternatively used to generate the Borel σ -algebra on R.

� Example 1.6 [KKK] Consider the family of open intervals in R,

α = {(a,b)⊆ R : −∞ < a < b <+∞} .

We wish to show that σ(α) = BR. First, since each open interval is an open set in R, we have
that α ⊆ σ(τR). Then, using Theorem 1.1 (iii), we obtain that σ(α) ⊆ σ(τR) because σ(τR)

is a σ -algebra on R. Secondly, since each open set in R can be expressed as the result of the
union of countably many open intervals, we know that τR ⊆ σ(α). This is so because, as a
σ -algebra that contains α , σ(α) must contain the unions of countably arbitrarily many open
intervals. Then σ(τR)⊆ σ(α) follows from Theorem 1.1 (iii) since σ(α) is a σ -algebra on R.
Therefore, σ(α) = σ(τR) = BR. �

� Example 1.7 [KKK] Consider the family of all bounded right-semiclosed intervals of R,

β = {(a,b]⊆ R : −∞ < a < b <+∞} .
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We wish to show that σ(β ) = BR as well. First, note that for each a,b ∈ R such that −∞ < a <

b <+∞, we have

(a,b] =
∞⋂

n=1

(
a,b+

1
n

)
.

Then, β ⊆ σ(τR) since, as a σ -algebra that contains τR, σ(τR) must contain the intersections
of countably arbitrarily many open intervals. From the fact that σ(τR) is a σ -algebra on R, it
follows, using Theorem 1.1 (iii), that σ(β )⊆ σ(τR). Secondly, note that for each a,b ∈ R such
that −∞ < a < b <+∞, we have

(a,b) =
∞⋃

n=1

(
a,b− 1

n

]
.

Then, by an argument totally analogous to the previous one, we obtain τR ⊆ σ(β ) and, then,
σ(τR)⊆ σ(β ). Therefore, σ(β ) = σ(τR) = BR. �

Observation 1.4 Using arguments totally analogous to these in the two examples above, one
can show that the Borel σ -algebra on R coincides also with the σ -algebras generated by the
following families of sets in R:

1. the family of all closed intervals;
2. the family of all bounded left-semiclosed intervals;
3. the family of all intervals of the form (−∞,a]

4. the family of all intervals of the form [b,+∞);
5. the family of all closed sets.

Since the family of all closed sets generates BR, it follows that that singletons and countable
sets in R are members of its Borel σ -algebra.

1.3 Measures and Probability Laws [KK]

To compute probabilities, we need to come up with a reasonable probability law. Suppose that
we wish to compute the probability of occurrence of a certain event A⊆Ω . Intuitively, when
the elementary events ω in the set Ω are equally likely, one could count the number elementary
events in both sets A and Ω , and then obtain the probability of A simply as the ratio |A|/ |Ω |.
But, how do we count these elementary events when the sets A and Ω are not finite or are
uncountable? Furthermore, which rules should we follow when the elementary events ω are
not equally likely? Historically, mathematicians have been interested in proposing a notion of
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probability law (as a primitive to model uncertainty) by generalizing the intuitive notions of
length, area or volume. The most useful generalization of these concept is provided by the notion
of a measure. With a general measure as a working tool, we will be able to compute probabilities
for a wide variety of random phenomena or experiments.3

Definition 1.7 A measure P on a measurable space (Ω ,F ) is a set function P : F → R∗

with P( /0) = 0, P(A) ≥ 0 for each A ∈F , and such that if {An}∞

n=1 ⊆F is a sequence of
pairwise disjoint events in F , then P

(⋃
∞
n=1 An

)
= ∑

∞
n=1 P(An).

Then, a probability measure P is a measure that also satisfies P(Ω) = 1.

At this point, we can present our workhorse to model randomness, which is commonly
known as probability space. A probability space is a triplet (Ω ,F ,P), where Ω is an arbitrary
nonempty sample set, F is a σ -algebra of event from Ω , and P is a probability measure on
(Ω ,F ).

In those cases where F is a Borel σ -algebra, with respect to some topology on the set Ω ,
and P is a probability measure on (Ω ,F ), then P is referred to as a Borel probability measure.
In addition, a measure that is typically used to compute probabilities of uncountable events in R,
when one considers that the drawing of each point is equally likely, is the Lebesgue Measure.

Definition 1.8 Given a closed interval [a,b]⊂ R, the Lebesgue Measure on R is

λ ([a,b]) = b−a.

If we start with a set of elementary events Ω = [a,b]⊂ R such that each ω ∈Ω is equally
likely, and we consider an event A = ∪n

i=1[ai,bi] ∈BΩ , where the intervals [ai,bi] are disjoint,
then P(A) = ∑

n
i=1(bi− ai)/(b− a) gives us the associated probability measure. The random

phenomena captured by this, and others closely related, probability measure as often referred to
phenomena that satisfy the “uniform probability law.” The Lebesgue Measure is analogously
considered for n-dimension Euclidean spaces. Thus, if we consider a hyperrectangle [a,b] =

×n
i=1[ai,bi]⊂ Rn, then the Lebesgue Measure on Rn is

λ ([a,b]) =
n

∏
i=1

(bi−ai).

The following properties can be derived from the definition of probability measure.

3The notation R∗ indicates the extended real line R∪{−∞,+∞}.
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Observation 1.5 1. Since Ω = Ac∪A and Ac and A are disjoint events, we have that

1 = P(Ω) = P(Ac)+P(A)⇒ P(Ac) = 1−P(A),

which, in turn, implies that 0≤ P(A)≤ 1 for any event A.
2. If A⊆ B, then, we can write. B = A∪ (Ac∩B), where and A and (Ac∩B) are disjoint

events. Therefore,

P(B) = P(A)+P(Ac∩B)≥ P(A).

3. By invoking the set operations and relations A∪B = A∪ [B \ (A∩B)], where A and
[B\ (A∩B)] are disjoint, and B = (A∩B)∪ [B\ (A∩B)], where (A∩B) and [B\ (A∩B)]

are disjoint as well, we obtain that

P(A∪B) = P(A)+P(B\ (A∩B)) and P(B) = P(A∩B)+P(B\ (A∩B))

⇒ P(A∪B) = P(A)+P(B)−P(A∩B),

which, in turn, directly implies that P(A∪B)≤ P(A)+P(B). Now, we can use induc-
tively the same logic above for two sets, to obtain a general expression for n sets, known
as inclusion-exclusion formula:

P
(
∪n

i=1 Ai
)
=

n

∑
i=1

P(Ai)−∑
i< j

P(Ai∩A j)+ ∑
i< j<k

P(Ai∩A j∩Ak)

+ · · ·+(−1)n+1P(A1∩·· ·∩An).

Furthermore, the formula above leads directly to the inequality

P
(
∪n

i=1 Ai

)
≤

n

∑
i=1

P(Ai),

known as Boole’s inequality.
Finally, since the de Morgan’s laws imply that ∪∞

n=1An =
(
∩∞

n=1Ac
n
)c, we obtain that

P(∪∞
n=1An) = 1−P(∩∞

n=1Ac
n)

for any sequence {An}∞

n=1 of events, not necessarily be disjoint.

� Example 1.8 [KK] To illustrate how the properties derived above can be used to compute
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probabilities in applications, suppose for instance that we toss a coin n times and wish to compute
the probability of the event A =“there shows up at least one head”. Here, we can take the set
of elementary events as Ω = {H,T}n so that |Ω | = 2n. If we specify the event Bi =“the ith
toss results in a head,” then we know that A = ∪n

i=1Bi. Note that the sets B1, . . . ,Bn are not
pairwise disjoint so that we cannot obtain P(A) as the sum ∑

n
i=1 P(Bi). However, using some of

the properties above properties of a probability measure together, we have

P(A) = 1−P(Ac) = 1−P
(
(∪n

i=1Bi)
c
)
= 1−P

(
∩n

i=1 Bc
i

)
.

Notice that ∩n
i=1Bc

i consists of the event “the n tosses yield tails,” i.e., ∩n
i=1Bc

i = {(T, . . . ,T )}.
Then, P(∩n

i=1Bc
i ) = 2−n so that the probability of our event of interest can be computed as

P(A) = 1−2−n. �

1.4 Conditional Probability and Independence [K]
In many situations, there is some information available about the outcome of the random
phenomenon at the moment at which we assign probabilities. In these cases, we wish to answer
questions of the form “what is the probability that event A occurs given that we are aware that
another event B has occurred?”

Definition 1.9 Given a probability space (Ω ,F ,P) and two events A,B ∈ F such that
P(B)> 0, the conditional probability of A given B is

P(A|B) = P(A∩B)
P(B)

. (1.2)

If P(B) = 0, then the conditional probability of A given B is left undefined.

Observation 1.6 Using the notion of conditional probability, we can obtain a set of chain-rule

formulas that are useful in many applications:

P(A∩B) = P(A)P(B|A),

P(A∩B∩C) = P(A)P(B|A)P(C|A∩B),

P(A∩B∩C∩D) = P(A)P(B|A)P(C|A∩B)P(D|A∩B∩C), and so on.

Furthermore, if {An}∞

n=1 is a sequence of events that partitions the set of elementary events Ω ,
then the definition of conditional probability allows us to express the probability of an event B
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as:

P(B) =
∞

∑
n=1

P(An∩B) =
∞

∑
n=1

P(An)P(B|An).

This property is known as the Law of Total Probability.

Observation 1.7 Suppose that we begin working with a probability space (Ω ,F ,P) and
then take a given event B ∈F such that P(B) > 0. Then, we can consider the σ -algebra
restricted to such event B, FB = {A ∈ F : A∩B 6= /0}, which includes all the events in
the σ -algebra F that have some element(s) in common with set B. Then, it can be shown
that the set function P(·|B) : FB→ [0,1] given by the definition of conditional probability,
P(A | B) = P(A∩B)/P(B), is a well defined probability measure (check it!) on the measurable
space (B,FB). Therefore, (B,FB,P(·|B)) gives us another probability space. Intuitively, if
we are certain that event B ∈F has happened, then we would like to switch from the original
probability space (Ω ,FB,P) to the new universe (B,F ,P(·|B)) to compute probabilities.

� Example 1.9 [KK] Suppose that we roll a dice twice. The dice is fair so that all faces are
equally likely to come out. The two dice rolls are independent from each other. We would
like to compute the probability that, given that the outcome of the second roll is a higher
number than the outcome of the first roll, the sum of the two roll outcomes is 5 and their
difference is 1. To tackle this question, we can naturally consider an elementary event as
ω = (ω1,ω2) ∈ Ω = {1, . . . ,6}×{1, . . . ,6}, where ωi captures the outcome of the ith roll of
the dice. Then, |Ω |= 6 ·6 = 36 gives us the number of possible outcomes from rolling the dice
twice. Since outcomes are equally likely, we can naturally consider that for any event A⊆Ω of
the relevant sample space, P(A) = |A|/|Ω |.

Now, consider the events/sentences A =“the sum of the two roll outcomes is 5,” B =“the
difference between the two roll outcomes is exactly 1,” and C =“the second roll outcome resulted
in a higher number than the first roll.” We then wish to compute the probability P(A∩B |C). We
can first notice that

A = {(1,4),(4,1),(2,3),(3,2)}

and

B = {(1,2),(2,1),(2,3),(3,2),(3,4),(4,3),(4,5),(5,4),(5,6),(6,5)}.
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In addition,

C = {(ω1,ω2) : ω2 > ω1 and ω1,ω2 ∈ {1, . . . ,6}}.

Therefore, event C captures 5 possible outcomes when ω1 = 1, 4 possible outcomes when ω1 = 2,
and so on until 1 possible outcome when ω1 = 5. In consequence, |C|= 5+4+3+2+1 = 15.
Following Observation 1.7, we can now take event C, which contains 15 elementary events, as
our sample space in a new restricted universe. Then, we observe that A∩B = {(2,3),(3,2)} so
that A∩B∩C = {(2,3)}. Therefore, the sought probability P(A∩B |C) is equal to 1/15. �

The following example is a classical one that allows us to practice further with the idea
of events with the probability properties presented earlier in Observation 1.5, and with the
conditional probability implications presented in Observation 1.6.

� Example 1.10 [KKK] Suppose that three blindfolded women throw their necklaces on a table.
Then, the necklaces are randomly mixed and each woman randomly chooses a necklace. We ask
about the probability that none of the women picks her own necklace. To tackle this questions,
we start by considering the events/sentences Ai =“the ith woman picks her own necklace” for
each woman named as i = 1,2,3. Then, “none of the women picks her own necklace” is the
complement event of the event A=“some of the women pick her own necklace.” We observe that
A = A1∪A2∪A3. Suppose that the necklaces owned by each woman are initially labelled as
{1,2,3}, exactly as the names of the women, so that woman i owns necklace i in that set. Then,
we can think of an elementary event as a triplet (ω1,ω2,ω3), where ωi ∈ {1,2,3} is the necklace
picked by the ith woman after the random mixed of them. In this case, our sample set would be

Ω = {(ω1,ω2,ω3) : ωi ∈ {1,2,3} for i = 1,2,3, and ωi 6= ω j for i 6= j}.

Therefore, we observe that

A1 = {(1,2,3),(1,3,2)}, A2 = {(1,2,3),(3,2,1)}, and A3 = {(1,2,3),(2,1,3)}.

In addition, we can compute |Ω |= 3 ·2 ·1 = 3! = 6 since three possible necklaces can be chosen
by the first woman, two possible remaining necklaces can be chosen by the second woman,
and only one possible necklace remains available for the third woman. We can then compute
P(Ai) = 2/6 = 1/3 for each woman i = 1,2,3. Intuitively, the probability that each woman
choses her own necklace is 1/3 since she is equally likely to select any of the three available
necklaces.
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We now notice that the probability that woman 2 picks her own necklace given that woman 1
has selected her own necklace is P(A2 | A1) = 1/2 since two possible necklaces remain available
for the second woman, and one of such necklaces is hers. Therefore, P(A1 ∩A2) = P(A2 |
A1)P(A1) = 1/2 ·1/3 = 1/6.

We can now think in a recursive fashion (as stated in Observation 1.6) to compute the
probability of event A1∩A2∩A3, which describes the outcome that each woman ends up with
her own necklace. Given that women 1 and 2 have picked their own necklaces, it is very intuitive
to see that the probability that the third woman selects her own necklace, P(A3 | A1∩A2), is one
since hers is the only remaining necklace. Then,

P(A1∩A2∩A3) = P(A1)P(A2 | A1)P(A3 | A1∩A2) = 1/3 ·1/2 ·1 = 1/6.

Now, we can resort to the inclusion-exclusion formula stated in Observation 1.5 to compute

P(A1∪A2∪A3) = P(A1)+P(A2)+P(A3)

−P(A1∩A2)−P(A2∩A3)−P(A1∩A3)+P(A1∩A2∩A3)

= 1/3+1/3+1/3−1/6−1/6−1/6+1/6 = 2/3.

Finally, we obtain that the probability that none of the three women picks her own necklace is
P(Ac) = 1−2/3 = 1/3. �

The definition of conditional probability gives rise directly to an expression which is used
to obtain conditional probabilities in many applications when we have a partition of the set of
elementary events. This expression is known as Bayes’ Rule, and it can be viewed simply as an
alternative formulation of the definition of conditional probability.

Theorem 1.2 — Bayes’ Rule. [K] Let (Ω ,F ,P) be a probability space and let {Ai}∞

i=1 be a
sequence of events Ai ∈F with P(Ai)> 0 for each i = 1,2, . . . , and such that they partition Ω ,
that is, the events Ai are mutually disjoint and satisfy ∪∞

i=1Ai = Ω . Consider an event B ∈F

such that P(B)> 0. Then,

P(Ak|B) =
P(B|Ak)P(Ak)

∑
∞
i=1 P(B|Ai)P(Ai)

for each given k = 1,2, . . . .

Proof of Theorem 1.2. Note first that since B = ∪∞
i=1
(
B∩Ai

)
, where the events {B∩Ai}∞

i=1 are
disjoint, we directly obtain the expression of the Total Probability Rule, P(B) = ∑

∞
i=1 P(B∩Ai).
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Then, by applying the definition of conditional probability, it follows that

P(B) =
∞

∑
i=1

P(B∩Ai) =
∞

∑
i=1

P(B|Ai)P(Ai).

Secondly, using the definition of conditional probability again, we can write, for each given
k = 1,2, . . . ,

P(Ak|B) =
P(Ak∩B)

P(B)
=

P(B|Ak)P(Ak)

∑
∞
i=1 P(B|Ai)P(Ai)

,

as stated.

Ω

B A3∩B

A1

A2

A3

A4

A5

Figure 1.3: Illustration of Bayes’ Rule.

The following example illustrates a typical application of Bayes’ Rule.

� Example 1.11 A ball is drawn from one of two urns depending on the outcome of the roll of a
fair die. If the die shows 1 or 2, then the ball is drawn from Urn I, which contains 6 red balls and
2 white balls. If the die shows 3, 4, 5, or 6, then the ball is drawn from Urn II, which contains 7
red balls and 3 white balls. Suppose that we wish to know the probability that the ball came from
Urn I (Urn II) given that we know that a white ball is drawn. Let us denote the event “the ball
comes from Urn I (Urn II)” simply as I (II) and let us use w (r) to denote the event “the drawn
ball is white (red).” Then, we can compute P(I|w) and P(II|w) by applying Bayes’ Rule as

P(I|w) = P(w|I)P(I)
P(w|I)P(I)+P(w|II)P(II)

=
(1/4)(1/3)

(1/4)(1/3)+(3/10)(2/3)
=

5
17

,

P(II|w) = P(w|II)P(II)
P(w|I)P(I)+P(w|II)P(II)

=
(3/10)(2/3)

(1/4)(1/3)+(3/10)(2/3)
=

12
17

.
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�

An interesting situation arises when the knowledge that an event B occurs does not change
the odds that another event A occurs. In this case, we are left with P(A|B) = P(A), provided that
P(B)> 0. Then, it is intuitive to view this sort of situations as A and B happening independently
from each other—in probability terms. Independence is a key concept both in probability and
inference theories. We can use the logic behind the idea of conditional probability, to state

Definition 1.10 Two events A,B are independent events if the probability of occurrence of
event a does not depend on the occurrence of event B, P(A | B) = P(A). Equivalently, A and
B are independent if the probability of simultaneous occurrence of both events P(A∩B) can
be decomposed multiplicatively as P(A∩B) = P(A)P(B).

The above is a simple criterion when one deals with a pair of events. However, the exten-
sion of this definition to more than two events A1, . . . ,An is not straightforward. In particular,
independence of a set of events {A1, . . . ,An} requires much more than just the multiplicative
decomposition P(∩n

i=1Ai) = P(A1)×·· ·×P(An). In particular,

Definition 1.11 A finite family A1, . . . ,An of events is independent if

P(Ak1 ∩·· ·∩Ak j) = P(Ak1)×·· ·×P(Ak j)

for each relabeling of events k1, . . . ,k j, with 1≤ k1 < · · ·< k j ≤ n, for each 2≤ j ≤ n.

In short, a finite family of events is independent if each of its subfamilies is. Analogously, an
infinite (perhaps uncountable) family of events is independent if each of its finite subfamilies is.

� Example 1.12 [K] To grasp the subtleties behind the definition of independence for a family
of events, consider a set of elementary events Ω = {a,b,c,d} and suppose that the probability
of each ω ∈Ω is 1/4. Consider the three events A = {a,b}, B = {a,c}, and C = {a,d}. Then,
we have

P(A∩B) = P(A∩C) = P(B∩C) = P(A∩B∩C) = P({a}) = 1/4,

so that P(A∩B) = P(A)P(B), P(A∩C) = P(A)P(C), and P(B∩C) = P(B)P(C). However,
P(A∩B∩C) = 1/4 6= 1/8 = P(A)P(B)P(C). Therefore, we obtain that events A, B, and C are
pairwise independent but all three of them are not independent. �

Sometimes, the notion of independence of events does not have clear intuitive interpretation
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in terms of odds of occurrence, as it is the case in the following example.

� Example 1.13 [KK] Consider a set of elementary events Ω =
{
(x,y) ∈ R2 : 0≤ x,y≤ 1

}
and consider the probability space (Ω ,BΩ ,λ ) where λ is the Lebesgue measure on R2. Suppose
that we wish to know whether the events

A =
{
(x,y) ∈ R2 : 0≤ x≤ 1/2, 0≤ y≤ 1

}
,

B =
{
(x,y) ∈ R2 : 0≤ x≤ 1, 0≤ y≤ 1/4

}
are independent or not. To answer this, we simply need to compute the area of the respective
rectangles. First, notice that

A∩B =
{
(x,y) ∈ R2 : 0≤ x≤ 1/2, 0≤ y≤ 1/4

}
.

Then, one obtains λ (A) = 1/2, λ (B) = 1/4, and λ (A∩B) = 1/8, so that λ (A∩B) = λ (A)λ (B)

and A and B are independent events.

Consider now the event

C =
{
(x,y) ∈ R2 : 0≤ x≤ 1/2, 0≤ y≤ 1, y≥ x

}
We have λ (C) = 1/2− (1/2)3 = 3/8 and λ (C)λ (B) = 3/32. On the other hand, λ (C∩B) =

1/2(1/4)2 = 1/32 so that C and B are not independent events. �

In other cases, conditional probability and independence of events can actually have intuitive
interpretations in terms of odds of occurrence.

� Example 1.14 [KK] Two people (Bob and Alice) choose at random a number in the interval
[0,2] under the “uniform probability law.” Let us then consider the events: A =“the difference
between the two numbers is greater than 1/3”; B =“at least one of the numbers is greater than
1/3”; C =“the two numbers are equal”; D =“only the number picked by Alice is greater than
1/3.” We wish to compute the probabilities P(B), P(C), and P(A∩D).

Using a graphical approach, we can compute the probability of events using Lebesgue
measures. Then, we obtain

P(B) = 1−P(“both numbers are smaller than 1/3”) = 1− (1/3)(1/3)
2 ·2

=
35
36

,
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P(C) =
area of the segment

{
(x,y) ∈ [0,2]2 : y = x

}
2 ·2

=
0
4
= 0,

P(A∩D) =
area of the double shaded area

2 ·2
=

(5/3)(5/3)(1/2)+(4/3)(4/3)(1/2)
4

=
41
72

.

�

� Example 1.15 [KK] Suppose that we wish to buy two laptops from a shop that has 100 old
model laptops and 1500 new model laptops in stock. An extensive market survey informs us that
15% of the old model, and 5% of the new model, laptops have some kind of defect. When an
order comes in, a laptop is chosen at random from the shop stock. We decide whether to buy old
or new model laptops based on the outcome of a coin toss, and, after we know the outcome of
the coin toss, we order two laptops of the same model (either new or old). Suppose that we wish
to know the probability that both laptops will be defective. To answer this, consider first that we
choose the old model. Then, there are 0.15×100 = 15 defective old model laptops. Secondly,
notice that the events “first is defective given that the first is old” and “second is defective and
first is defective given that the second is old” are independent. Also, the simultaneous occurrence
of both events gives us the event “the two laptops are defective given that the two are old.” Then,
probability that we choose two defective old model laptops is then

P(two defective |old) = P(first is defective |first is old)

×P(second is defective |first is defective&second is old) =
15

100
· 14

99
.

Analogously, for the case where we choose new model laptops, there are 0.05 · 1500 = 75
defective new model laptops and, therefore, we obtain

P(two defective |new) = P(first is defective |first is new)

×P(second is defective |first is defective&second is new) =
75

1500
· 74

1499
.

Finally, using the Total Probability Law, we can compute

P(two defective) = P(two defective |old) ·P(old)

+P(two defective |new) ·P(new) =
15

100
· 14

99
· 1

2
+

75
1500

· 74
1499

· 1
2
.

�

In addition to computing conditional probabilities, we can use the following example to
practice with visualization of events and probabilities in finite sample spaces.
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� Example 1.16 [KK] Suppose that we roll a dice twice. The dice is fair so that all faces
are equally likely to come out. The two dice rolls are independent from each other. We can
naturally consider an elementary event as ω = (ω1,ω2) ∈ Ω = {1, . . . ,6}×{1, . . . ,6}, where
ωi captures the outcome of the ith roll of the dice. Then, |Ω |= 6 ·6 = 36 gives us the number
of possible outcomes from rolling the dice twice. Since outcomes are equally likely, we can
naturally consider that for any event A⊆Ω of the relevant sample space, P(A) = |A|/|Ω |.

Consider first the following events/sentences: A =“the sum of the two roll outcomes is 12,”
B =“at least one roll resulted in 6,” and C =“at least one roll resulted in 1.”

1. We ask whether or not events A and B are independent. Then, we notice that A = {(6,6)}
since the only way of obtaining a sum equal to 12 is that both rolls come out exactly with
number 6 as outcome. Therefore, P(A) = 1/36. On the other hand, we observe that

B = A∪{(6,ω2) : ω2 ∈ {2, . . . ,6}}∪{(ω1,6) : ω1 ∈ {2, . . . ,6}},

so that |B|= 1+5+5 = 11. Therefore, P(B) = 11/36. In addition, we observe that A⊂ B

so that B∩A = A. Therefore, P(B | A) = P(B∩A)/P(A) = P(A)/P(A) = 1 6= P(B) so that
events A and B are not independent.

2. We ask whether or not events A and C are independent. First, exactly as in the previous
case, we observe that |C|= 11 and P(C) = 11/36 since there are exactly 11 ways of having
at least outcome 1 turning out. However, we observe that A *C since the sum attained by
having at least one 1 showing up cannot be higher than number 7. Therefore, C∩A = /0 so
that P(C | A) = P(C∩A)/P(A) = P( /0)/P(A) = 0 6= P(C). Thus, events A and C are not
independent either.

Now, consider the events/sentences D =“the sum of the two roll outcomes is 9,” E =“the
difference between the two roll outcomes is exactly 1,” and F =“the second roll outcome resulted
in a higher number than the first roll.”

1. We ask whether or not events E and F are independent. Then, we can notice that

E = {(1,2),(2,1),(2,3),(3,2),(3,4),(4,3),(4,5),(5,4),(5,6),(6,5)}.

Therefore, |E|= 10 and P(E) = 10/36. On the other hand, we observe that

F = {(ω1,ω2) : ω2 > ω1 and ω1,ω2 ∈ {1, . . . ,6}}.

Therefore, event F captures 5 possible outcomes when ω1 = 1, 4 possible outcomes
when ω1 = 2, and so on until 1 possible outcome when ω1 = 5. In consequence,
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|F | = 5+ 4+ 3+ 2+ 1 = 15 and P(F) = 15/36. In addition, we observe that E ∩F =

{(1,2),(2,3),(3,4),(4,6),(5,6)} so that |E ∩F | = 5 and P(E ∩F) = 5/36. Then, we
can compute P(F | E) = P(E ∩F)/P(E) = 1/2 6= P(F) = 15/36. Thus, E and F are not
independent events.

2. Now, we ask whether or not events E and F are independent given event D. One way to
tackle this question is to resort directly to the definition of independence of two events.
Using the definition, the answer will be affirmative if we can verify that

P(E ∩F | D) = P(E | D)P(F | D).

In this case, we can notice that

D = {(3,6),(6,3),(4,5),(5,4)}.

Therefore, E ∩D = {(4,5),(5,4)} so that P(E ∩D) = 2/36 and, since P(D) = 4/36 6= 0,
we have P(E | D) = P(E ∩D)/P(D) = 1/2. In addition, it can be noted that F ∩D =

{(3,6),(4,5)} so that P(F ∩D) = 2/36 and, since P(D) = 4/36 6= 0, we have P(F |
D) = P(F ∩D)/P(D) = 1/2. Finally, we observe that E ∩F ∩D = {(4,5)} and, since
P(D) = 4/36 6= 0, we have P(E∩P |D) = 1/4. By putting together all these computations,
we obtain that

P(E ∩F | D) = 1/4 = P(E | D)P(F | D) = 1/2 ·1/2.

Therefore, E and F are independent events given event D.
�

1.5 Practice Exercises

Exercise 1.1 Let A1,A2, . . . be an infinite sequence of distinct subsets of some nonempty set
Ω . Show by induction that
(a) (∪∞

n=1An)
c = ∩∞

n=1Ac
n.

(b) (∩∞
n=1An)

c = ∪∞
n=1Ac

n.

Exercise 1.2 Let F be a family of subsets of some nonempty set Ω .
(a) Suppose that Ω ∈F and that A,B ∈F implies A\B ∈F . Show that F is an algebra.
(b) Suppose that Ω ∈F and that F is closed under the formation of complements and finite
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disjoint unions. Show that F need not be an algebra.

Exercise 1.3 Let F1,F2, . . . be a family of subsets of some nonempty set Ω .
(a) Suppose that Fn are algebras satisfying Fn ⊆Fn+1. Show that ∪∞

n=1Fn is an algebra.
(b) Suppose that Fn are σ -algebras satisfying Fn ⊆Fn+1. Show by example that ∪∞

n=1Fn

need not be a σ -algebra.

Exercise 1.4 Let Ω = {(x,y) ∈ R2 : 0 < x,y≤ 1}, let F be the family of sets of Ω of the
form

{
(x,y) ∈ R2 : x ∈ A, 0 < y≤ 1

}
,

where A ∈B(0,1], and let P({(x,y) ∈ R2 : x ∈ A, 0 < y≤ 1}) = λ (A), where λ is Lebesgue
measure on R. Show that (Ω ,F ,P) is a probability space.

Exercise 1.5 Let (Ω ,F ,P) be a probability space and, for A ∈F , let PA : F → [0,1] be a
set function defined by PA(B) = P(A∩B) for each B ∈F .
(a) Show that, for a given A ∈F , PA is a measure, but not a probability measure, on (Ω ,F ).
(b) Show that, for a given A ∈F such that P(A)> 0, the set function QA on F defined by
QA(B) = PA(B)/P(A) for each B ∈F is a probability measure on (Ω ,F ).

Exercise 1.6 Let P1, . . . ,Pn be probability measures on some measurable space (Ω ,F ).
Show that Q = ∑

n
i=1 aiPi, where ai ∈R+ for each i = 1, . . . ,n and ∑

n
i=1 ai = 1, is a probability

measure on (Ω ,F ).

Exercise 1.7 Let (Ω ,F ,P) be a probability space and let A1, . . . ,An be events in F such
that P(∩k

i=1Ai)> 0 for each k = 1, . . . ,n−1.
(a) Show that

P(∩n
i=1Ai) = P(A1)P(A2|A1)P(A3|A1∩A2) · · ·P(An|A1∩A2∩·· ·∩An−1).

(b) Show that if P(∩k
i=1Ai) = 0 for some k ∈ {1, . . . ,n−1}, then P(∩n

i=1Ai) = 0.
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Exercise 1.8 Let (Ω ,F ,P) be a probability space and let A, B and C be three events in F

such that P(A∩B∩C)> 0. Show that P(C|A∩B) = P(C|B) implies P(A|B∩C) = P(A|B).

Exercise 1.9 Let (Ω ,F ,P) be a probability space and let A1, . . . ,An be independent events
in F . Let B1, . . . ,Bn be another sequence of events such in F such that, for each i = 1, . . . ,n,
either Bi = Ai or Bi = Ω \Ai. Show that B1, . . . ,Bn are independent events.





2. Random Variables and Distributions
[K]

In many probability applications, it is useful to have a tool that allows us to assign probabilities
consistently over events in a general sample set Ω by computing probabilities over the real line
instead. The notion of random variable is a key concept in probability theory that gives us a
transformation through which we can move from computing probabilities over arbitrary sample
sets to doing so over the real line.

2.1 Random Variables and Random Vectors [K]
Sometimes, we begin with relatively complicated elementary events, such as sequences or func-
tions, and would rather be interested in working with measurable spaces whose corresponding
elementary events be real numbers instead. This approach allows us to deal in a unified and
consistent way with a huge variety of random phenomena. Of course, a function is the tool that
can be used to move from arbitrary events to events in the real line. The specification of such
a function would be given by the particular features of the random experiment of interest. To
illustrate this, suppose that we roll a dice ten times. In this case, the underlying elementary events
would have the form ω = (ω1, . . . ,ω10) ∈Ω = {1, . . . ,6}10. In some applications, however, we
might be interested in the sum of the outcomes so that the required function X : Ω →R could be
specified as X(ω) = ∑

10
i=1 ωi. Other applications could ask instead about the smallest outcome

of the dice rolls, so that we would specify X(ω) = mini=1,...,10 {ωi}.
However, in order to preserve the structure of the corresponding family of events, the

proposed function X : Ω → R needs to satisfy a particular property, which yields the concept of
random variable.
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Definition 2.1 A random variable on a measurable space (Ω ,F ) is a function X : Ω → R
such that for each B ∈BR, we have

X ∈ B = {ω ∈Ω : X(ω) ∈ B} ∈F ,

where we use X ∈ B as short-hand notation for the inverse image of the set B through the
function X .

The Borel σ -algebra is usually taken as the reference σ -algebra on the real line and the crucial
point of the definition of a random variable X is to guarantee that, for each Borel set B ∈BR, the
inverse image X ∈ B = {ω ∈Ω : X(ω) ∈ B} actually lies in the original σ -algebra F . However,
once we have understood the logic behind the notion of random variable, we can simply use a
random variable X to describe a set of possible outcomes of a random experiment—under the
condition that such outcomes are expressed as real numbers.

It is important to notice that the definition of a random variable does not depend on proposing
a particular probability measure. Of course, in order to compute probabilities in applications,
we will need a probability measure P on the original measurable space (Ω ,F ). Then, when
we make use of a random variable on a measurable space (Ω ,F ), which is in turn endowed
with some probability measure, we obtain the notion of probability distribution of the random

variable.

Definition 2.2 Given a probability space (Ω ,F ,P) and a random variable X a random
variable on (Ω ,F ), the associated probability distribution of the random variable X is a
probability measure ψ on (R,BR) specified by

ψ(B) = P(X ∈ B) = P({ω ∈Ω : X(ω) ∈ B}).

The following example illustrates the notions of random variable and of its associated probability
distribution.

� Example 2.1 [KK] Suppose that we roll three dice together and are interested in the sum
of the numbers that show up. In principle, we could take as our primitive the probability
space (Ω ,F ,P), where ω = (ω1,ω2,ω3) ∈ Ω = {1, . . . ,6}3, F = 2Ω , and P is specified by
P(A) = |A|/63 for each A ∈F . However, the measurable space (F ,P) is not be particularly
useful since we are interested only on the sum of the numbers that show up. Then, we can make
use of a function X : Ω → R specified as X((ω1,ω2,ω3)) = ω1 +ω2 +ω3. Since F = 2Ω , this
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function X is a random variable because for each subset B⊆ [3,18], we can guarantee that

[X ∈ B] = {(ω1,ω2,ω3) ∈ {1, . . . ,6}3 : ω1 +ω2 +ω3 ∈ B} ∈ 2Ω .

Now, consider the event B = (3,5] ∈BR. Using the concept of probability distribution of X , we
can compute the probability that “the sum of the numbers that show up is larger that three but no
larger than five” as

ψ(B) = P(X ∈ B) =
|{(ω1,ω2,ω3) ∈Ω : 3 < ω1 +ω2 +ω3 ≤ 5}|

63 =
9
63 .

�

Many random phenomena take place simultaneously in more than a single dimension. To
study the odds of occurrence of several features that stem from a common underlying probability
space, the concept of random variable can be readily extended to that of random vector. In such
cases, the relevant events are subsets of a multidimensional Euclidean space.

Definition 2.3 A random vector on a measurable space (Ω ,F ) is a function
X = (X1, . . . ,Xn) : Ω → Rn such that for each B ∈BRn , we have

X ∈ B = {ω ∈Ω : (X1(ω), . . . ,Xn(ω)) ∈ B} ∈F .

Furthermore, it can be proved that a function X = (X1, . . . ,Xn) : Ω → Rn is a random vector on
some (Ω ,F ) if and only if each of its components Xi is a random variable on (Ω ,F ). In other
words, a random vector is simply a list of random variables. The idea of probability distribution
works analogously for a random vector.

Definition 2.4 The probability distribution of the random vector X = (X1, . . . ,Xn) associ-
ated to an underlying probability space (Ω ,F ,P) is a probability measure ψ on (Rn,BRn)

specified by

ψ(B) = P(X ∈ B) = P({ω ∈Ω : (X1(ω), . . . ,Xn(ω)) ∈ B}) for each B ∈BRn.

2.2 Distribution Functions [K]
Sometimes it is useful to use an alternative formulation to compute the probabilities captured by
the probability distribution of a random variable.
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Definition 2.5 The distribution function of the random variable X given by the probability
distribution ψ is the function F : R→ R specified by F(x) = ψ((−∞,x]) = P(X ≤ x).

In words, a distribution function is simply a function that gives probabilities only of Borel
sets which have the particular the form (−∞,x]. In this sense, the distribution function F of a
random variable seems, at least at first glance, more restrictive than its probability distribution
ψ . Nevertheless, a few key properties of a probability measure allow us to use generally the
distribution function of a random variable to compute probabilities exactly the same way as we
would do using its probability distribution. Some of these properties deal with the continuity of
a probability measure and are stated in the theorem below. A proof of this result is beyond the
scope of this notes.

Theorem 2.1 — Billingsley [1995]. [KKK] Let ψ be a probability measure on a measurable
space (Ω ,F ), then:

(i) continuity from below: if A,A1, . . . ,An, . . . are events with A1 ⊆ A2 ⊆ . . . and A =

∪∞
n=1An, then ψ(A1)≤ ψ(A2)≤ . . . and limn→∞ ψ(An) = ψ(A);

(ii) continuity from above: if A,A1, . . . ,An, . . . are events with A1 ⊇ A2 ⊇ . . . and A =

∪∞
n=1An, then ψ(A1)≥ ψ(A2)≥ . . . and limn→∞ ψ(An) = ψ(A);

(iii) if the set of elementary events Ω can be obtained as the union of some finite
or countable sequence of events, then the corresponding σ -algebra F cannot contain an
uncountable disjoint collection of events {A : A ∈F} with ψ(A)> 0.

Observation 2.1 Some useful properties of a distribution function F can be derived directly
from Theorem 2.1 above. First, from the result that A⊆ B implies ψ(A)≤ ψ(B), we learn that
F is monotone nondecreasing. Secondly, by continuity from above of the probability measure
ψ on (R,BR) (Theorem 2.1 (ii)), we obtain

lim
y→x+

F(y) = lim
ε→0

ψ((−∞,x+ ε]) = ψ((−∞,x]) = F(x) = P(X ≤ x),

so that F is right-continuous. Thirdly, by continuity from below of the probability measure
ψ on (R,BR) (Theorem 2.1 (i)), the left-hand limit limy→x− F(y) = limε→0 ψ((−∞,x− ε])

exists and

lim
y→x−

F(y) = ψ((−∞,x)) = P(X < x).
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Therefore, the “jump” of F at a x is

P(X = x) = ψ({x}) = F(x)− lim
y→x−

F(y),

which, combined with the result (iii) of Theorem 2.1, leads to that the distribution function F

can have at most countably many points of discontinuity. Finally, another property that follows
from Theorem 2.1 is that limx→−∞ F(x) = 0 and limx→+∞ F(x) = 1.

Furthermore, the converse implication follows. More precisely, any function F : R→ R that
satisfies the properties described in 2.1 is in fact a distribution function.

Theorem 2.2 [KK] Let F : R→ R be a monotone nondecreasing, right-continuous function
satisfying

lim
x→−∞

F(x) = 0 and lim
x→+∞

F(x) = 1.

Then, there exists a random variable X on some probability space (Ω ,F ,P) such that F(x) =

P(X ≤ x).

Proof of Theorem 2.1. We consider the probability space ((0,1),B(0,1),P), where P is the
Lebesgue measure on ((0,1),B(0,1)). To grasp the logic of the proof, suppose first that F is
strictly increasing and continuous so that, in this case, F : R→ (0,1) is a one-to-one mapping.
Let ν : (0,1)→ R be the inverse mapping ν = F−1. Since F is a one-to-one function, then
we know that ν is a strictly increasing function. Let X : (0,1)→ R be the function specified
as X(ω) = ν(ω) for ω ∈ (0,1). Since ν is strictly increasing, then X is a random variable
on ((0,1),B(0,1)). For a given ω ∈ (0,1), we have that ν(ω) ≤ x if and only if ω ≤ F(x).
Furthermore, since P is a Lebesgue measure, then we know that

P(X ≤ x) = P
(
{ω ∈ (0,1) : ν(ω)≤ x}

)
= P

(
(0,F(x)]

)
= F(x)−0 = F(x),

as required.

To complete the proof, consider now the case where either F has discontinuities or it is not
strictly increasing. Let us define, for ω ∈ (0,1), ν(ω) = inf{x ∈ R : ω ≤ F(x)}. Note that,
since F is nondecreasing and right-continuous, then the set {x ∈ R : ω ≤ F(x)} is in fact an
interval with the form [ν(ω),+∞) for some ω ∈ (0,1) (i.e., it is closed on the left and stretches
to +∞). Therefore, we obtain again that ν(ω)≤ x if and only if ω ≤ F(x) so that, by specifying
X(ω) = ν(ω) for ω ∈ (0,1), and by applying the same arguments as above, we obtain again
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that X is a random variable on ((0,1),B(0,1),P) and that P(X ≤ x) = F(x).

For many applications, the previous results allow us to use directly the distribution function
of a random variable to compute probabilities over Borel sets over than those with the form
(−∞,a]. For instance, some typical computations are P(X > a) = 1− F(a) or, for b > a,
P(a < X ≤ b) = F(b)−F(a) =−0.2.

� Example 2.2 [K] Suppose that we roll an unfair five side dice. The random variable X

describes the outcome of the roll. The underlying probability distribution is described in Figure
2.4, which plots the distribution function F(x) = P(X ≤ x) for each possible outcome x = 1, . . . ,5
of the roll. We then observe that the probability that the outcome of the roll be higher than
number 2 is P(X > 2) = 1−F(2) = 1−0.4 = 0.6. In addition the probability that the outcome
of the roll be be either number or number 3 is P(X ∈ {2,3}) = P(1 < X ≤ 3) = F(3)−F(2) =
4/15−0.2 = 1/15.

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

4/15

F(x)

Figure 2.1: Illustration of distribution function.

�

We will need to resort to multidimensional distribution functions when we are interested in
probability calculations over several features, that is, in situations where we are dealing with
random vectors.

Definition 2.6 The joint distribution function of the random vector X =(X1, . . . ,Xn) with prob-
ability distribution ψ is the function F : Rn→R specified by F(x1, . . . ,xn) = ψ(Sx) = P(X1≤
x1, . . . ,X1≤ x1), where Sx = {(y1, . . . ,yn) ∈ Rn : yi ≤ xi, i = 1, . . . ,n} is the Euclidean region
of points “southwest” with respect to x.
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2.3 Discrete Random Variables [K]
When a random phenomenon can generate at most a countable number (perhaps infinite) of
possible outcomes, the associated random variable is said to be discrete. Discrete random
variables are associated to probability measures that assign positive probability of occurrence
only to finitely or countably many points. All random experiments related to drawing a number
of times (even an arbitrary number of times) elements from a finite set are described by means of
discrete random variables. Coin tosses and dice rolls are typical examples of such experiments.
We now present the formal ingredients.

Definition 2.7 A support for a probability measure ψ on (R,BR) is a Borel set S ∈BR

satisfying ψ(S) = 1.

More intuitively, a support of a random variable X is a simply set that includes all realizations
that can generate the random phenomena captured by X . Of course, a probability measure
can admit an infinite number of different supports an we need further qualification here. More
precisely, if S is a support of a probability measure ψ and S⊂ T ∈BR, then T is also a support
of ψ since it must be the case that ψ(T ) = 1 and ψ(A) = 0 for each Borel set A ∈ T \ S. For
simplicity, it is commonly understood that one seeks for the minimal support with respect to set
inclusion. In other word, we are mainly interested in the set that includes exactly all realizations
that can generate the random phenomena, disregarding realizations that have zero probability
of occurrence. Then, when we wish to consider outcomes of a random phenomena that have
actually positive probability of occurrence, we focus on the the particular support S ∈BR of the
corresponding distribution ψ such that S′ ⊂ S implies ψ(S)< 1. From the result of Theorem 2.1
(ii), we know that the minimal support supp(ψ) of a probability measure ψ is unique. Then, we
will use X to denote the minimal support of the random variable X (associated to the minimal
support of the corresponding probability measure). In this case, the support of the random
variable X will be simply identified with the range of the random variable X when we think
of it as a function X : Ω → R. Thus, we can restrict attention to the function X : Ω → X as
realizations x /∈ X will have zero probability of occurrence.

Definition 2.8 A random variable X and its probability distribution ψ are said to be discrete

if ψ has a countable support S = {x1,x2, . . . ,xn, . . .}. Furthermore if ψ has a finite support,
then the corresponding random variable is said to be a simple random variable.

When a random variable X is discrete, its corresponding probability distribution ψ is completely
determined by the values ψ({xi}) = P(X = xi) for i = 1,2, . . . . For a discrete random variable
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X , the function f : X → [0,1] which gives us f (xi) = P(X = xi) is often referred to as discrete

density function or mass function. Of course, as a consistency requirement with the probabilities
computed by a discrete density function, it must be the case that ∑xi∈X f (xi) = 1. Using the
discrete density function of a random variable, we can compute values of its distribution function
simply as

F(x) = P(X ≤ x) = ∑
xi≤x

P(X = xi) = ∑
xi≤x

f (xi).

The following example presents an experiment that can be formalized by means of a discrete
random variable and illustrates how discrete density functions can be derived.

� Example 2.3 [KK] This example uses some ideas of combinatorics, as described in chapter 9.
Consider a box that contains a red balls and b black balls. We pick randomly n balls from the
box. In doing so, we replace each ball back into the box after each draw. Let us use X to indicate
the number of red balls finally picked along the n draws. We would like to compute the discrete
density of the random variable X . To answer this, let us specify the set of balls as

S = {1, . . . ,a,a+1, . . . ,a+b} ,

where we follow the convention that {1, . . . ,a} are the red balls and {a+1, . . . ,a+b} are the
black balls. Then, since there is replacement, our set of elementary events is Ω = Sn so that
|Ω |= (a+b)n. The random variable X can be then specified as

X(ω) = X
(
(ω1, . . . ,ωn)

)
= |{ωi ∈ S : ωi ≤ a, i = 1, . . . ,n}| .

Since the discrete density function of X is defined as f (x) = P(X = x), we need to compute the
number of possible samples which have exactly a number x of its coordinates no larger than a.
In other words, we must compute the cardinality of the event

A = {ω ∈Ω : |{ωi ≤ a}|= x} .

Since the draws are with replacement, notice that there are ax ways of selecting x coordinates
yielding numbers no larger than a and bn−x ways of selecting the remaining n− x coordinates
yielding numbers between a+1 and a+b. Finally, there are

(n
x

)
ways of choosing x coordinates

from the n coordinates in the sample. Then, we obtain

f (x) =
(

n
x

)
axbn−x(a+b)−n.
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Now, in this experiment the probability of choosing a red ball after drawing one ball from the
box is p = a/(a+b). This is commonly known as the probability of success in a sequence of n

Bernoulli trials. Using this probability of success, we can rewrite f (x) as

f (x) =
(

n
x

)(
a

a+b

)x( b
a+b

)n−x

=

(
n
x

)
px(1− p)n−x.

We will see later that the density function above corresponds to a Binomial distribution with
parameter p. �

A random vector is said to be discrete if all its components are discrete random variables.
For a discrete random vector X = (X1, . . . ,Xn), the function f : Rn→ R defined as

f (x1, . . . ,xn) = P(X1 = x1, . . . ,Xn = xn),

which gives us the probabilities of occurrence of each combination of outcomes, is often referred
to as the discrete joint density function of X . Sometimes we begin with a random vector but
are interested instead in computing probabilities of occurrence along a single component of the
vector. This idea is captured by the concept of marginal distribution of the random vector. For
the case of a discrete random vector X = (X1, . . . ,Xn), we derive the marginal discrete density

function of a random variable Xi simply as

fi(xi) = ∑
X1

· · · ∑
X i−1

∑
X i+1

· · ·∑
Xn

f (x1, . . . ,xi−1,xi+1, . . . ,xn)

The idea here is that we focus only on the component Xi of interest and abstract from all the
others. This procedure to obtain marginal distributions applies generally when we wish to restrict
attention to a subset components included in our original random vector. Some of the concepts
that we have just introduced are illustrated in the example below.

� Example 2.4 [KK] Consider a random vector (X ,Y ) with joint discrete density function

f (x,y) = c(x2 + y2) for x ∈ {1,2,4} and y ∈ {1,3} ,

where c is some real number. Note first that

(X ,Y ) = {(1,1),(1,3),(2,1),(2,3),(4,1),(4,3)}
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and then, for f (x,y) to be a density, we need

c(1+1)+ c(1+9)+ c(4+1)+ c(4+9)+ c(16+1)+ c(16+9) = 1 ⇒ c = 1/72.

Using this density, we can now compute, for example, the following probabilities:

P(X > Y ) = P({(2,1)})+P({(4,1)})+P({(4,3)}) = 5
72

+
17
72

+
25
72

=
47
72

,

P(Y = 3) = P({(1,3)})+P({(2,3)})+P({(4,3)}) = 10
72

+
13
72

+
25
72

=
48
72

.

Also, we can obtain the marginal density

fx(x) = ∑
y∈{1,3}

f (x,y) =


2

72 +
10
72 for x = 1

5
72 +

13
72 for x = 2

17
72 +

25
72 for x = 4

=


12
72 for x = 1
18
72 for x = 2
42
72 for x = 4.

�

2.4 Continuous Random Variables [K]
Unlike the random experiments suitably captured by discrete random variables, other random
phenomena exhibit the property that the sets of their possible outcomes are uncountable. For
example, many economic models, assume for mathematical tractability that consumption and
production sets, or set of prices are uncountable. The most common way to deal with random
variables in these cases is to consider continuous random variables.

Definition 2.9 A random variable X and its probability distribution ψ are said to be continuous

if there exists a function f : R→ R such that f (x)≥ 0 for each x ∈ R and

P(X ∈ B) = ψ(B) =
∫

B
f (x)dx for each B ∈BR. (2.1)

The function f is referred to as density function (with respect to Lebesgue measure).1 Of course,
if B = R in the expression (Eq. (2.1)) above, then f must integrate to 1.

1Alternatively, when a notion of integral more general than the Riemann Integral is required, the probability
computation expressed in condition (Eq. (2.1)) above can be written as

P(X ∈ B) = ψ(B) =
∫

B
f (x)λ (dx),

where λ is the Lebesgue measure on R.
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Observation 2.2 Since the Borel σ -algebra BR can be generated by the family of all intervals
with the form (a,b]⊂ R, it follows from the celebrated Carathéodory’s Theorem (Theorem
11.1) that the requirement in (Eq. (2.1)) above holds for each Borel set if it is satisfied for
each interval (a,b] ⊂ R. This enables us to, alternatively, state that a random variable X

with associated distribution function F is continuous if there exists a nonnegative function
f : R→ R such that

P(a < X ≤ b) = F(b)−F(a) =
∫ b

a
f (x)dx for each a < b. (2.2)

ba

f (x)

Figure 2.2: Illustration of probability computation for a continuous random variable following
Eq. (2.2).

The only requirement that needs to be satisfied for X to be a continuous random variable
is that it has a density function f that integrates properly as expressed in (Eq. (2.2)) above.
In particular, the distribution function is not required to differentiate everywhere, neither F

or f are required to be continuous everywhere. Nevertheless, if f is a continuous function,
then it follows from the Fundamental Theorem of Calculus that F ′(x) = f (x) and that f is a
density function associated to the distribution function F . The basic question that remains then
is what happens when f is not continuous? First, to gain some intuition about the direction
of the answer, recall that a distribution function F of any random variable can have at most
countably many points of discontinuity so that it is continuous almost everywhere (with respect
to Lebesgue measure). Further, a more formal the answer can be obtained by resorting to the
famous Lebesgue Differentiation Theorem (see Lebesgue [1910]). This theorem requires that
F be nondecreasing, which we already know it is the case, and states that if the condition in
(Eq. (2.2)) is satisfied, then F can be can be differentiated almost everywhere (with respect to
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Lebesgue measure) and that F ′(x) = f (x) holds at each continuity point x of f . The support of
continuous random variable X with density function f is specified as X = {x ∈ R : f (x)> 0}.
Intuitively, the support of the random variable includes only Borel sets whose probability of
occurrence is positive according to the corresponding density.

P(X ≤ 0.8)

−3 −2 −1 1 2 3

0.2

0.4

0.6

0.8

1

x

F(x)

−3 −2 −1 1 2 3

x

f (x)

0.8

0.8

Figure 2.3: Density and distribution function of a continuous random variable. P(X ≤ 0.8) =
F(0.8) =

∫ 0.8
−∞

f (x)dx.

Observation 2.3 We can use continuous random variables to compute probabilities in a way
very similar to the one we would follow for the cases described by discrete random variables.
Leaving aside the technical differences we can appreciate the similarities between discrete and
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continuous random variables by comparing how we compute probabilities in the discrete case,

P(X ≤ x) = F(x) = ∑
xi≤x

f (xi) and P(a < X ≤ b) = F(b)−F(a) =
xi≤b

∑
xi>a

f (xi),

with the case where X is a continuous random variable,

P(X ≤ x) = F(x) =
∫ x

−∞

f (y)dy and P(a < X ≤ b) = F(b)−F(a) =
∫ b

a
f (x)dx.

A random vector is said to be continuous if all its components are continuous random variable.
For each continuous random vector X = (X1, . . . ,Xn) there exists a density function f : Rn→ R
such that we can compute the probability of occurrence of each Borel set B ∈BRn as

P((X1, . . . ,Xn) ∈ B) =
∫
· · ·
∫

B

f (x1, . . . ,xn)dx1 · · ·dxn.

The density f is often referred to as the joint density function (with respect to Lebesgue measure)
of X . The joint distribution function of a continuous random vector is related with its joint
density function as

F(x1, . . . ,xn) =
∫ x1

−∞

∫ x2

−∞

· · ·
∫ xn

−∞

f (y1,y2, . . . ,yn)dy1dy2 . . .dyn.

For the case of a continuous random vector X = (X1, . . . ,Xn), we derive the marginal density

function of a random variable Xi simply as

fi(xi) =
∫
· · ·
∫

Rn−1

f (x1, . . . ,xi−1,xi+1, . . . ,xn)dx1 · · ·dxi−1xi+1 · · ·dxn.

Of course, we can also relate the corresponding marginal distribution function Fi(xi) = P(Xi≤ xi)

to the density fi(xi) in the usual way.
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Figure 2.4: Illustration of bidimensional joint density.

In a way totally analogous to the discussion of ideas of conditional probability in Section
5.8, we sometimes wish to compute the probability that a random variable X takes certain values
given that we know that some event B has occurred, or that another random variable Y yields
some particular values. We can do such computations by using the conditional distribution of
the random variable X . The required definitions exhibit some technical differences depending on
whether the random variables of interest are discrete or continuous.

Definition 2.10 Consider a discrete random variable X . Then, the conditional discrete density

of X given that another random variable Y lies in some Borel set B, with P(Y ∈ B)> 0, is the
nonnegative function

fX |B(x) =
P({X = x}∩{Y ∈ B})

P(Y ∈ B)
.

Since P(Y ∈ B) = ∑x∈X P({X = x}∩ {Y ∈ B}), we see that ∑x∈X fX |B(x) = 1, as needed for
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fX |B(x) to be indeed a density. When Y is a discrete variable as well, it makes sense to deal with
the information that the random variable has taken a particular value Y = y, with P(Y = y)> 0.
In this case, the expression of the conditional discrete density of X becomes

fX |y(x) =
P(X = x,Y = y)

P(Y = y)
=

f (x,y)
f2(y)

,

where f denotes the joint density function of the random vector (X ,Y ) and f2 stands for the
marginal density of Y .

Definition 2.11 Consider a continuous random variable X . Then, the conditional density of
X given that another random variable Y lies in some Borel set B, with P(Y ∈ B)> 0, is the
nonnegative function fX |B(x) that satisfies the equality:

∫
A

fX |B(x)dx =
P({X ∈ A}∩{Y ∈ B})

P(Y ∈ B)
for each A ∈BR.

Since P(Y ∈ B) =
∫

X P({X ∈ A}∩{Y ∈ B}), we observe, by letting A = X in the expression
above, that fX |B(x) integrates to one over the support of X . Finally, if we consider a value y

for the random variable, then we obtain the same expression as in the discrete case for the
corresponding conditional density, that is, fX |y(x) = f (x,y)/ f2(y).

� Example 2.5 [KK] Consider a continuous random pair (X ,Y ) with joint density

f (x,y) =

ax if 1≤ x≤ y≤ 2,

0 otherwise,

where a is an undetermined parameter. Then, we first would like to know which value must take
parameter a for f (x,y) to be actually a density. By integrating over the described support we
would need to obtain

∫ ∫
(X ,Y ) f (x,y)dxdy = 1. Then, we can compute

∫ x=2

x=1

(∫ y=2

y=x
axdy

)
dx =

∫ x=2

x=1
ax(2− x)dx

= a
[
x2− x3/3

]x=2
x=1 = a

[
22−23/3−12 +13/3

]
= a[2/3] = 1 ⇒ a = 3/2.

Secondly, we would like to obtain the marginal densities of X and Y . We can then compute, for
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the support x ∈ [1,2],

f1(x) =
∫ y=x

y=2
(3/2)xdy = (3/2)

[
y
]y=x

y=2 = (3/2)
(
x−2

)
.

Similarly, for the support y ∈ [1,2], we obtain

f2(y) =
∫ x=y

x=1
(3/2)xdx = (3/2)

[
x2/2

]x=y
x=1 = (3/4)

(
y2−1

)
.

Thirdly, we would like to obtain the conditional density of X given Y = y. Using the definition
fX |y(x) = f (x,y)/ f2(y), we can compute

fX |y(x) =
(3/2)x

(3/4)
(
y2−1

) = x
2(y2−1)

for the support 1≤ x≤ y≤ 2. Note that the density above is not well-defined for x = y = 1. �

� Example 2.6 [KK] Consider a person that earns a random wage of X ∈ [0,40] dollars each
day according to a density f1(x) = x/800. This person takes all the earned wage X = x to the
casino each night and ends up with a random amount Y . At worst, this person can lose all the
entire wage wage x and thus end up with nothing, y = 0. At best, this person can earn twice the
wage y = 2x. Ending up with each possible outcome y ∈ [0,2x] is equally likely. We would like
to know the probability that, on a given night, this person wins a positive amount of money from
the casino.

To answer this question, note first that, since ending up with each outcome y ∈ [0,2x] is
equally likely, this person ends the night with an amount of Y dollars that follows a density
fY |x(y) = 1/(2x) for y ∈ [0,2x]. Then, we would like to compute the probability that P(Y > X).
To compute this probability, we need first to derive the joint density f (x,y). Using the definition
fY |x(y) = f (x,y)/ f1(x), we obtain

f (x,y) = fY |x(y) f1(x) = (1/2x) · (x/800) = 1/1600

for the support x ∈ [0,40] and 0≤ y≤ 2x. Then, we can compute

P(Y > X) =
∫ x=40

x=0

∫ y=2x

y=x
(1/1600)dydx

= (1/1600)
∫ x=40

x=0
2xdx = (1/1600)

[
x2/2

]x=40
x=0 = 1/2.

�
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2.5 Functions of a Random Variables [KK]
In many applications, we wish to obtain the probability distribution of some transformation
Y = g(X) of a random variable X . To pursue this approach, we must verify first that Y = g(X) is
indeed a random variable. Then, given the requirement of the definition of a random variable,
it turns helpful to to restrict attention to cases where the transformation g corresponds to a
one-to-one function.

The treatment of this problem is relatively simple in the discrete case, as the following
example illustrates.

� Example 2.7 [K] Consider a discrete random variable X with discrete density function f (x) =(n
x

)
px(1− p)n−x, for some p ∈ (0,1), and whose support is {1,2, . . . ,n}. Let Y = g(X) = a+bX

for some a,b > 0. We are interested in obtaining the discrete density function of Y . Let us denote
such a density by h. First, notice that, by applying g to the elements in the support of X , the
support of Y is g({1,2, . . . ,n}) = {a+b,a+2b, . . . ,a+nb}. Then, we can simply compute

h(y) = f
(
(y−a)/b

)
=

(
n

(y−a)/b

)
p(y−a)/b(1− p)n−(y−a)/b,

where y ∈ {a+b,a+2b, . . . ,a+nb}. �

Thus, for the case of discrete random variables, we observe that we only need to find the
inverse function of the transformation g and then incorporate it directly into the corresponding
discrete density function.

Obtaining the probability distribution of a transformation of continuous random variable, on
the other hand, can sometimes be done using a systematic approach.

Observation 2.4 Let us propose a simple rule to deal with transformations of continuous
random variables. To do this in a systematic way, we need to assume that the corresponding
density function is continuous and that the transformation g : R→ R is a one-to-one con-
tinuously differentiable function. In this case, the inverse function T = g−1 exists and it is
differentiable as well. Let us use H and h to denote, respectively, the distribution function and
the density of the random variable Y = g(X). Then, if the random variable X has distribution
function F and continuous density f , we already know that F ′(x) = f (x) holds for each x ∈ R.
To proceed, suppose first that g is increasing. In this case, for each y ∈ R, we have

H(y) = P(g(X)≤ y) = P(X ≤ T (y)) = F
(
T (y)

)
.
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Since T = g−1 is differentiable, we obtain

h(y) =
d
dy

H(y) =
d
dy

F
(
T (y)

)
= F ′

(
T (y)

)
T ′(y) = f

(
T (y)

)
T ′(y).

Now, suppose that g is decreasing. Then, we know that

H(y) = P(g(X)≤ y) = P(g(X)< y) = P(X > T (y)) = 1−F
(
T (y)

)
,

so that

h(y) =
d
dy

H(y) =−F ′
(
T (y)

)
T ′(y) =− f

(
T (y)

)
T ′(y).

Therefore, in either case the random variable Y = g(X) has density

h(y) = f
(
T (y)

)∣∣T ′(y)∣∣ .
The above arguments serve as an informal proof of the following useful result.

Theorem 2.3 [K] Let g : U →V be a one-to-one continuously differentiable function, where
U,V are open sets in R. Suppose that T = g−1 satisfies T ′(y) 6= 0 for each y ∈V . Then, if X

is a continuous random variable with density f , supported in U , it follows that the random
variable Y = g(X) has density h, supported in V , given by

h(y) =

 f (T (y)) |T ′(y)| if y ∈V ,

0 if y /∈V .

The following example illustrates how the result in Theorem 2.3 can be applied.

� Example 2.8 [K] Consider a positive continuous random variable X with continuous density
f and suppose that we are interested in obtaining the density function of 1/X . Note that
T (y) = g−1(y) = 1/y, which is differentiable for each y ≥ 0. Also, T ′(y) = −1/y2 so that
h(y) = f (1/y)/y2. �

Beyond the simple (and systematic) rule provided by Theorem 2.3, we can use the reasoning
followed in its proof to obtain the density of a transformation Y = g(X) even in cases where g is
not one-to-one, as the following example shows.
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� Example 2.9 [KK] Suppose that X is a continuous random variable with density

f (x) =
1√
2π

e−x2/2, for x ∈ R.

This density corresponds to a distribution known as Normal with parameters (0,1). Let Y = X2

be a random variable with distribution function H and density function h. Notice that the
transformation g(X) = X2 is not one-to-one. However, the fact that the function f is symmetric
around the origin allows us to write

H(y) = P(X2 ≤ y) = P(−√y≤ X ≤√y) =
1√
2π

∫ √y

−√y
e−x2/2dx

=
2√
2π

∫ √y

0
e−x2/2dx.

Now, we can deal with the integral above by proposing the change of variables t = x2 so that
dx = 1/2

√
tdt. Recall that we need to apply this change of variables to the integration limits as

well. Then, we obtain

H(y) =
∫ y

0

1√
2πt

e−t/2dt.

Since it must be the case that H(y) =
∫ y

0 h(t)dt and Y = R+, we obtain that Y = X2 has density

h(y) =
1√
2πy

e−y/2 for y > 0.

As we shall see later, the density h(y) obtained above corresponds to a distribution known as
Chi-square with parameter 1. �

Even further, when the transformation g is neither one-to-one nor continuous, the logic
behind the result of the Theorem 2.3 can, in some cases, be applied parts of the function g which,
taken separately, are one-to-one. The following result states formally such a use of the “Change
of Variables Theorem.”

Theorem 2.4 [KK] Let X and Y = g(X) be two continuous random variables and let f be
the density function of X . Suppose that there exists a partition {A0,A1, . . . ,Ak} of X such that
P(X ∈ A0) = 0 and f is continuous in each Ai (i = 0,1, . . . ,k). Suppose that there are functions
g1(x),g2(x), . . . ,gk(x) defined, respectively, on A1,A2, . . . ,Ak such that

(i) g(x) = gi(x) for each x ∈ Ai (i = 1,2, . . . ,k);
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(ii) each gi is monotone in Ai (i = 1,2, . . . ,k);
(iii) the set V = {y ∈ R : y = gi(x) for some given x ∈ Ai} is the same for each i =

1,2, . . . ,k;
(iv) g−1

i (y) is continuously differentiable on V for each i = 1,2, . . . ,k.
Then, the density function h of the random variable Y is given by

h(y) =
k

∑
i=1

f
(
g−1

i (y)
)∣∣∣∣ d

dy
g−1

i (y)
∣∣∣∣ for y ∈V.

Changes of variables for a discrete random vectors can done quite straightforwardly, just
as shown for the case of a discrete random variable. As to continuous random vectors, we can
follow a systematic approach that parallels the one given by Theorem 2.3, provided that certain
conditions are satisfied. More precisely, let g : U→V be a one-to-one continuously differentiable
function, where U,V ⊆ Rn are open sets. We begin with n random variables X1, . . . ,Xn, with
joint density function f , and transform them into “new” random variables Y1, . . . ,Yn using the
functions

y1 = g1(x1, . . . ,xn)

...

yn = gn(x1, . . . ,xn).

Then, we ask about the joint density function of Y1, . . . ,Yn. Let T = g−1 denote the corresponding
inverse function and suppose that its Jacobian never vanishes, that is,

J(y) =

∣∣∣∣∣∣∣∣


∂T1
∂y1

(y) . . . ∂T1
∂yn

(y)
... . . . ...

∂Tn
∂y1

(y) . . . ∂Tn
∂yn

(y)


∣∣∣∣∣∣∣∣ 6= 0 for each y ∈V.

Under these conditions we can state the following useful result, which is simply a generalization
of Theorem 2.3 for the multidimensional case.

Theorem 2.5 [KK] Let g : U → V be a one-to-one continuously differentiable function,
where U,V are open sets in Rn. Suppose that T = g−1 satisfies J(y) 6= 0 for each y ∈ V . If
X is a random vector with density f , supported in U , then the random vector Y = g(X) has
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density h, supported in V , and given by

h(y) =

 f (T (y)) |J(y)| if y ∈V ,

0 if y /∈V .

The following example illustrates an application of the result in Theorem 2.5 above

� Example 2.10 [K] Let (X1,X2) a continuous random vector with joint density function

f (x1,x2) = e−(x1+x2), for x1,x2 ∈ R+.

Consider the transformation given by

y1 = x1 + x2, y2 = 2x1− x2.

Suppose that we wish to find the joint density function of the random vector (Y1,Y2). To do this,
note first that

x1 =
y1 + y2

3
, x2 =

2y1− y2

3
.

Then, by applying the result in Theorem 2.5 above, we obtain

|J(y)|=
∣∣∣∣∂x1

∂y1

∂x2

∂y2
− ∂x2

∂y1

∂x1

∂y2

∣∣∣∣= 1
3
,

and, consequently,

h(y1,y2) =
1
3

e−y1 for y1 ≥ 0.

�

2.6 Independence of Random Variables [K]
The idea of independent random events applies as well to random phenomena captured by a
multidimensional random variable. In many applications, the odds of occurrence of the outcomes
described by a random variable do not affect the odds of outcomes described by another random
variable. This case can be formally characterized by several, seemingly different, conditions.
One of the traditional definitions of independence of random variables is the following.
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Definition 2.12 A set of random variables X1, . . . ,Xn are independent if the probability of the
simultaneous occurrence of Borel sets with the from (ai,bi], i = 1, . . . ,n, can be decomposed
as the product of the probabilities of these events, that is, if

P
(
X1 ∈ (a1,b1], . . . ,Xn ∈ (an,bn]

)
= P

(
X1 ∈ (a1,b1]

)
×·· ·×P

(
Xn ∈ (an,bn]

)
. (2.3)

This definition covers our earlier requirement for the case of independence of a (finite) collection
of random events. Recall that, according to such a requirement we should verify that the
respective multiplicative decomposition be satisfied for each subcollection of random variables
of the original collection. Here, these conditions are automatically satisfied by the definition in
(Eq. (2.3)) above. To see this, suppose that we wish to verify whether a subset of random variables
{X j1, . . . ,X jk} ⊂ {X1, . . . ,Xn} meets the required multiplicative decomposition of probabilities.
Then, we only need to consider the condition in the definition in (Eq. (2.3)) above and take
(a jm ,b jm] = R for those random variables that are not included in the subset that we consider,
that is, for each m /∈ {1, . . . ,k}.

As mentioned above, other alternative formulations of independence or random variable are
common in probability theory and its applications. The message conveyed by the following
Theorem plays a central role around all such alternative formulations.

Theorem 2.6 [KK] Consider a set of elementary events Ω and a set of algebras A1, . . .An

on Ω . If each collection of events A1, . . . ,An, with Ai ∈ Ai for i = 1, . . . ,n, is independent,
then each collection of events B1, . . . ,Bn, with Bi ∈ σ(An) for i = 1, . . . ,n is independent too.

In order to propose alternative conditions characterizing independence of random variables,
notice first that we can take limai→−∞(ai,xi] in definition (Eq. (2.3)) above to obtain that the
required condition must apply to all sets of the form (−∞,xi], with xi ∈ R, as well. On the other
hand, suppose that the condition in (Eq. (2.3)) above is satisfied for all sets of the form (−∞,xi],
with xi ∈ R. Then, since the Borel σ -algebra on R can be generated by all sets of the form
(−∞,xi], we have, by applying the result of Theorem 2.6, that such a multiplicative condition
must hold for all sets of the form (ai,xi], with ai ∈ R, as well. Therefore, we obtain that the
requirement in condition (Eq. (2.3)) is satisfied if and only if the corresponding multiplicative
decomposition can be expressed in terms of the joint distribution function of the random variables,
that is, whenever

F(x1, . . . ,xn) = F1(x1)×·· ·×Fn(xn) for each (x1, . . . ,xn) ∈ Rn.

In addition, for the case where the random variables of interest X1, . . . ,Xn are discrete, Theorem
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2.6 above also allows us to state that they are independent if and only if, for each (x1, . . . ,xn)∈Rn,
we have

P(X1 = x1, . . . ,Xn = xn) = P(X1 = x1)×·· ·×P(Xn = xn)

⇔ f (x1, . . . ,xn) = f1(x1)×·· ·× fn(xn).

As for the case where the random variables X1, . . . ,Xn are continuous, we can simply resort to
the multiplicative decomposition of the corresponding joint distribution function and to the result
of the famous Fubbini’s Theorem on iterated integrals, to obtain a totally analogous condition in
terms of the joint density function. In particular, a set of continuous random variables X1, . . . ,Xn

are independent if and only if

f (x1, . . . ,xn) = f1(x1)×·· ·× fn(xn) for each (x1, . . . ,xn) ∈ Rn.

Beyond these quite common formulations, the result in Theorem 2.6 enables us to state a general
necessary condition2 of independence of random variables. In particular, notice that, if we know
that the random variables X1, . . . ,Xn are independent, then it must be the case that

P(X1 ∈ B1, . . . ,Xn ∈ Bn) = P(X1 ∈ B1)×·· ·×P(Xn ∈ Bn)

for any collection of Borel sets B1, . . . ,Bn ∈BR.

In some applications, knowing that a set random variables are independent is very helpful
to obtain the distribution of transformations of random variables for which the general rule
proposed earlier in Theorem 2.5 would not apply, as the following example illustrates.

� Example 2.11 [K] Let X1,X2,X3 be independent continuous random variables with common
density

f (x) = e−x for x > 0,

and suppose that we are interested in obtaining the density function h(y) of the random variable

2Of course, it is also a sufficient condition. However, for obvious tractability reasons, one does not use it a
condition to check for independence in applications.
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Y = min{X1,X2,X3}. Then, for a given number y > 0, we have

H(y) = P(min{X1,X2,X3} ≤ y) = 1−P(min{X1,X2,X3}> y)

= 1−P(X1 > y,X2 > y,X3 > y) = 1−P(X1 > y)P(X2 > y)P(X3 > y)

= 1−
(∫

∞

y
e−xdx

)3

= 1− e−3y.

Consequently, h(y) = H ′(y) = 3e−3y for y > 0. �

Working with independent random variables also allows us to obtain simple expressions for
the distributions of sums of such random variables. Perhaps the best known of such expressions
is the convolution formula. The following example deals with a simple application of the
convolution of two continuous random variables.

� Example 2.12 [KK] Consider two continuous and independent random variables X and Y ,
with joint density f (x,y) and marginal densities f1(x), f2(y). Suppose that we wish to obtain
the density of the sum X +Y . To do this, let us first propose the transformations U = X +Y and
V =Y , and then let us apply the rule provided by Theorem 2.5 to the mapping (X ,Y ) 7→ (U,V ) =

(X +Y,Y ). If we let h(u,v) denote the joint density of the random vector (U,V ), then we obtain
directly that h(u,v) = f (u− v,v). Now, since X and Y are independent random variables, we
know that h(u,v) = f1(u− v) f2(v). Thus, to obtain the (marginal) density of U = X +Y we
simply need to integrate the density h(u,v) over the support of the random variable V = Y :

hX+Y (u) =
∫

Y
f1(u− y) f2(y)dy.

�

Observation 2.5 The notion of independency of random variables can be extended readily to
random vectors. One simply needs to verify that any of the earlier definitions of independence
holds with the appropriate changes in the formula so as to consider random vectors instead of
random variables. In particular, if each Xi is a ki-dimensional random vector, for i = 1, . . . ,n,
then the random vectors X1, . . . ,Xn are independent if, for each x1 ∈Rk1, . . . ,xn ∈Rkn , we have

P(X1 ≤ x1, . . . ,Xn ≤ xn) = P(X1 ≤ x1)×·· ·×P(Xn ≤ xn).
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2.7 Practice Exercises

Exercise 2.1 A die is rolled 12 times. Compute the probability of getting at most 3 fours.

Exercise 2.2 Let X be a random variable on some probability space (Ω ,F ,P) and let
g : R→R be a one-to-one function. Show that Y = g(X) is a random variable on (Ω ,F ,P).

Exercise 2.3 Let F1, . . . ,Fn be distribution functions on some probability space (Ω ,F ,P).
Show that G = ∑

n
i=1 aiFi, where ai ∈R+ for each i = 1, . . . ,n and ∑

n
i=1 ai = 1, is a distribution

function on (Ω ,F ,P).

Exercise 2.4 Let X be a continuous random variable on some probability space (Ω ,F ,P)

with density f (x) = 1/2e−|x| for x ∈ R. Compute P(X ≥ 0), P(|X | ≤ 2), and P(1≤ |X | ≤ 2).

Exercise 2.5 Any point in the interval [0,1) can be represented by its decimal expansion
.x1x2 . . . . Suppose that a point is chosen at random from the interval [0,1). Let X be the first
digit in the decimal expansion representing the point. Compute the density of X considered
as a random variable on some probability space.

Exercise 2.6 A box contains 6 red balls and 4 black balls. A random size of n balls is drawn
from the box. Let X be the number of red balls picked. Compute the density of X , considered
as a random variable on some probability space, if the sampling is without replacement.

Exercise 2.7 Let n be a positive integer and let h be a real-valued function defined by

h(x) =

c2x if x = 1,2, . . .n,

0 otherwise.

Find the value of c such that h is a discrete density function on some probability space.

Exercise 2.8 Let X be a discrete random variable on some probability space with support

{−3,−1,0,1,2,3,5,8}
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and discrete density function f specified by f (−3) = .2, f (−1) = .15, f (0) = .2, f (1) = .1,
f (2) = .1, f (3) = .15, f (5) = .05, and f (8) = .05. Compute the following probabilities:
(a) X is negative;
(b) X is even;
(c) X takes a value between 1 and 5 inclusive;
(d) P(X =−3|X ≤ 0);
(e) P(X ≥ 3|X > 0).

Exercise 2.9 A box contains 12 numbered balls. Two balls are drawn with replacement from
the box. Let X be the larger of the two numbers on the balls. Compute the density of X

considered as a random variable on some probability space.

Exercise 2.10 Let X be a random variable on some probability space (Ω ,F ,P) such that
P(|X−1|= 2) = 0. Express P(|X−1| ≥ 2) in terms of the distribution function F of X .

Exercise 2.11 Show that the distribution function F of a random variable is continuous from
the right and that

lim
x→−∞

F(x) = 0 and lim
x→+∞

F(x) = 1.

Exercise 2.12 A point is chosen at random from the interior of a sphere of radius r. Each
point in the sphere is equally likely of being chosen. Let X be the square of the Euclidean
distance of the chosen point from the center of the sphere. Find the distribution function of X

considered as a random variable on some probability space.

Exercise 2.13 The distribution function F of some random variable X on some probability
space is defined by

F(x) =

0 if x≤ 0,

1− e−λx if x > 0,

where λ > 0. Find a number m such that F(m) = 1/2.
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Exercise 2.14 Let X be a random variable (on some probability space) with distribution
function

F(x) =



0 if x < 0,

x/3 if 0≤ x < 1,

x/2 if 1≤ x < 2,

1 if x≥ 2.

Compute the following probabilities:
(a) P(1/2≤ X ≤ 3/2);
(b) P(1/2≤ X ≤ 1);
(c) P(1/2≤ X < 1);
(d) P(1≤ X ≤ 3/2);
(e) P(1 < X < 2).

Exercise 2.15 The distribution function F of some random variable X (on some probability
space) is defined by

F(x) =
1
2
+

x
2(|x|+1)

, x ∈ R.

Find a density function f for F . At what points x will F ′(x) = f (x)?

Exercise 2.16 Let X be a continuous random variable with density f . Find a formula for the
density of Y = |X |.

Exercise 2.17 Let X be a positive continuous random variable with density f . Find a formula
for the density of Y = 1/(X +1).

Exercise 2.18 Let T be a positive continuous random variable on some probability space
(Ω ,F ,P). Let T denote the failure date of some system. Let F be the distribution function of
T , and assume that F(t)< 1 for each t > 0. Then, we can write F(t) = 1− e−G(t) for some
one-to-one function G : R++→ R++. Assume also that G′(t) = g(t) exists for each t > 0.
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(a) Show that T has density f satisfying

f (t)
1−F(t)

= g(t), t > 0.

(b) Show that for s, t > 0,

P(T > t + s|T > t) = e−
∫ t+s

t g(m)dm.

Exercise 2.19 Compute the density functions of the following transformations Y = g(X):
(a) f (x) = 1

2e−|x|, x ∈ R, with g(X) = |X |3;
(b) f (x) = 3

8(x+1)2, x ∈ (−1,1), with g(X) = 1−X2;
(c) f (x) = 3

8(x+1)2, x ∈ (−1,1), with g(X) = 1−X2 for X ≤ 0 and g(X) = 1−X for X > 0.

Exercise 2.20 Let (x,y) be a point randomly chosen from the square [0,1]2 and let X be the
random variable which assigns the number x+ y to the poing (x,y). Compute the distribution
function of X .

Exercise 2.21 Let be a (X1,X2) random vector with joint density

f (x1,x2) =
1

2π
e−

1
2 (x

2
1+x2

2), x1,x2 > 0,

supported on the set U =
{
(x1,x2) ∈ R2 : x1 > 0, 0 < x2 < 2π

}
. Consider the transformation

g to polar coordinates so that T = g−1 is given by

(x1,x2) = T (y1,y2) = (y1 cosy2,y1 siny2),

and g(R++) =
{
(y1,y2) ∈ R2 : y1 > 0, 0 < y2 < 2π

}
. Let h denote the joint density of

(Y1,Y2), and let h1 and h2 be the marginal densities of Y1 and Y2, respectively. Show that
(a) h(y1,y2) = (2π)−1y1e−y2

1/2, supported in
{
(y1,0) ∈ R2 : y1 ≥ 0

}
;

(b) h1(y1) = y1e−y2
1/2, supported in (0,+∞);

(c) h2(y2) = (2π)−1, supported in (0,2π).
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Exercise 2.22 Let X and Y be two continuous random variables whose respective densities,
given two numbers σ ,τ > 0,

f (x) =
1√

2πσ
e−

x2

2σ2

and

l(y) =
1√
2πτ

e−
y2

2τ2

are supported in R. Show that if X and Y are independent, then S = X +Y has density

m(s) =
1√

2π
√

σ2 + τ2
e
− s2

2(σ2+τ2) ,

supported in R.

Exercise 2.23 Suppose that X and Y are independent continuous random variables. Derive
formulas for the joint density for (X +Y,X), the density of X +Y , and the density of Y −X .

Exercise 2.24 Let X and Y be continuous random variables with joint distribution function
F and joint density f . Find the joint distribution function and the joint density of the random
variables W = X2 and Z = Y 2. Show that if X and Y are independent, then W and Z are
independent too.

Exercise 2.25 Let X and Y be two independent continuous random variables (on some
probability space (Ω ,F ,P)) having the same density each, f (x) = g(y) = 1 for x,y ∈ (0,1].
Find
(a) P(|X−Y | ≤ 0.5);
(b) P

(∣∣X
Y −1

∣∣≤ .05
)
;

(c) P(Y ≥ X |Y ≥ 1/3).

Exercise 2.26 Let X and Y be continuous random variables with joint density

f (x,y) =

ρ2e−ρy if 0≤ x≤ y,

0 otherwise,
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where ρ > 0. Find the marginal density of X and Y . Find the joint distribution function of X

and Y .

Exercise 2.27 Let f (x,y) = ce−(x
2−xy+4y2)/2 for x,y ∈ R How should c be chosen to make f

a joint density for two random variables X and Y ? Find the marginal densities of f .

Exercise 2.28 Let X , Y and Z be continuous random variables with joint density

f (x,y,z) =

c if x2 + y2 + z2 ≤ 1,

0 otherwise.

How should c be chosen to make f indeed a joint density of X , Y and Z. Find the marginal
density of X . Are X , Y and Z independent?



3. Expected Values and Moments of
Distributions [K]

The information contained in the probability distribution of a random variable can often be
summarized by some characteristics of the distribution, such as its shape and location. Such
characteristics are in most cases described by numbers known as the moments of the distribution.
One of the moments used in many applications is the expected value of the random variable. In
intuitive terms, the expected value of a random variable gives us the weighted average, according
to the probabilities of occurrence given by its distribution, of the possible values of the random
variable.

Definition 3.1 Suppose that X is a discrete random variable with discrete density f . Then, its
expected value is

E[X ] = ∑
xi∈X

xiP(X = xi) = ∑
xi∈X

xi f (xi).

Suppose that X is a continuous random variable with density f . Then, its expected value is

E[X ] =
∫

x∈X
x f (x)dx,

provided that the function x f (x) integrates properly over the support of X .

We observe that the definitions for the discrete and continuous cases are very similar. For
simplicity, the remaining of this Section will present its concepts only in terms of the integral
notation so that the case of discrete random variables only requires that we change integrals into
sums in the appropriate formulae. Also, to reduce the notational burden, many applications make
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use of µX (or simply of µ) to denote instead the expected value of the random variable X .

Observation 3.1 A few useful properties of the expected value of a random variable can be
derived directly by applying some properties of the integral (or sum). Here is a list a some
properties commonly used in many applications:

1. E[α] = α for each α ∈ R;
2. E[αX +βY ] = αE[X ]+βE[Y ] for each α,β ∈ R;
3. if X and Y are independent random variables, then E[X ·Y ] = E[X ] ·E[Y ];
4. if X ≤ Y almost everywhere (with respect to Lebesgue measure), then E[X ]≤ E[Y ].

The concept of conditional distribution allows us to obtain in many applications the expected
value, or the variance, of a random variable given that we have some available information about
some event, or about another random variable. For instance, sometimes we would like to know
the expected value of a random variable X given that the realization of another random variable
Y is y. In this case, we simply need to compute

E[X |Y = y] =
∫

X
x fX |y(x)dx.

The following examples illustrate how conditional expected values and variances can be obtained.

� Example 3.1 [K] Let us go back to the random pair (X ,Y ) with joint density

f (x,y) =

3x/2 if 1≤ x≤ y≤ 2,

0 otherwise,

which we considered earlier in Example 2.5. Suppose that we want to compute the conditional
expectation of the inverse of the random variable X given that the random variable Y takes the
value 3/2, that is, E[1/X | Y = 3/2]. Recall that we obtained in Example 2.5 the conditional
density

fX |y(x) =
(3/2)x

(3/4)
(
y2−1

) = x
2(y2−1)

for the support 1≤ x≤ y≤ 2. Then, we can compute

E[1/X | Y = 3/2] =
∫ x=3/2

x=1

1
x
· x

2((3/2)2−1)
dx = 8/5

[
x
]x=3/2

x=1 = 4/5.

�
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� Example 3.2 [KKK] Suppose that X and Y are two continuous random variables with joint
density

f (x,y) = n(n−1)(y− x)n−2 for 0≤ x≤ y≤ 1,

where n > 2 is some integer. We wish to compute the conditional density and conditional
expected value of Y given X = x.

First, note that the marginal density of X is given by

f1(x) =
∫

Y
f (x,y)dy = n(n−1)

∫ y=1

y=x
(y− x)n−2dy

= n(n−1)

[
(y− x)n−1

n−1

]y=1

y=x

= n(1− x)n−1

for 0≤ x≤ 1. Therefore, for 0≤ x≤ y < 1, we have that

fY |x(y) =
(n−1)(y− x)n−2

(1− x)n−1

Thus, we obtain

E[Y |X = x] =
∫ y=1

y=x
y f (y|x)dy

= (n−1)(1− x)1−n
∫ y=1

y=x
y(y− x)n−2dy.

To compute the integral above, note that

y(y− x)n−2 = [y− x+ x](y− x)n−2

= x(y− x)n−2 +(y− x)(y− x)n−2

= x(y− x)n−2 +(y− x)n−1.

So, by using the algebraical identity above, we obtain

E[Y |X = x] = (n−1)(1− x)1−n
∫ 1

x

[
x(y− x)n−2 +(y− x)n−1

]
dy

= (n−1)(1− x)1−n

[
x(1− x)n−1

n−1
+

(1− x)n

n

]

=
(n−1)(1− x)

n
+ x =

n−1+ x
n

.
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�

� Example 3.3 [K] Let us go back to the pair of random variables specified in Example 2.4.
These were two discrete random variables (X ,Y ) with joint density function

f (x,y) =
1
72

(x2 + y2) for x ∈ {1,2,4} and y ∈ {1,3} ,

so that

supp(X ,Y ) = {(1,1),(1,3),(2,1),(2,3),(4,1),(4,3)} .

Also, let us consider the event A = “X ≥ Y .” We wish to obtain E[X ], Var[X ], E[X ·Y ], E[X |A],
and Var[X |A]. First, recall from Example 2.4 that

f1(x) =


12
72 for x = 1
18
72 for x = 2
42
72 for x = 4.

Then, we have

E[X ] = 1 · 12
72

+2 · 18
72

+4 · 42
72

= 3

and

Var[X ] = (1−3)2 · 12
72

+(2−3)2 · 18
72

+(4−3)2 · 42
72

=
3
2
.

To compute E[X ·Y ], note first that E[X ·Y ] = E[X ] ·E[Y ] does not follow necessarily.1 However,
we can use instead directly the joint distribution function of the vector (X ,Y ). We obtain

E[X ·Y ] = 1
72

[
1 ·1 · (12 +12)+1 ·3 · (12 +32)+2 ·1 · (22 +12)+

2 ·3 · (22 +32)+4 ·1 · (42 +12)+4 ·3 · (42 +32)
]
=

61
9
.

To calculate E[X |A] and Var[X |A], we have first to compute the conditional density

fX |A(x) =
P({X = x}∩A)

P(A)
for x ∈ {1,2,4} .

1In general, E[X ·Y ] 6= E[X ] ·E[Y ] unless X and Y are independent.
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We obtain

P(A) = P(X ≥ Y ) = P({(1,1)})+P({(2,1)})+P({(4,1)})+P({(4,3)})

=
2

72
+

5
72

+
17
72

+
25
72

=
49
72

and, therefore,

fX |A(x) =


(2/72)
(49/72) for x = 1
(5/72)
(49/72) for x = 2
(42/72)
(49/72) for x = 4

=


2
49 for x = 1
5
49 for x = 2
42
49 for x = 4.

Then, we obtain

E[X |A] = 1 · 2
49

+2 · 5
49

+4 · 42
49

=
180
49

and

E[X2 |A] = 12 · 2
49

+22 · 5
49

+42 · 42
49

=
694
49

,

so that

Var[X |A] = E[X2 |A]− (E[X |A])2 =
694
49
−
(

180
49

)2

=
1606
2401

.

�

Observation 3.2 Note that the expected value E[X | Y ] is a random variable itself, where
Y captures an uncertain outcome. It makes sense to compute the expected value of such a
random variable over the support of Y . In particular, we obtain

E[E[X | Y ]] =
∫

Y
E[X | Y = y] f2(y)dy

=
∫

Y

[∫
X

x fX |y(x)dx
]

f2(y)dy

=
∫

X
x
[∫

Y

f (x,y)
f2(y)

f2(y)dy
]
dx

=
∫

X
x f1(x)dx = E[X ]



70 Chapter 3. Expected Values and Moments of Distributions [K]

since
∫

Y f (x,y)dy = f1(x). The implication E[E[X | Y ]] = E[X ] derived above is known as the
law of iterated expectations. Its message is intuitive. Suppose that we start from the expected
value of a random variable X , computed as conditional on another random variable Y . Suppose
that we then average such a conditional expected value over all possible realizations y of the
random variable Y . Then, naturally we end up with the unconditional expected value of the
random variable X .

� Example 3.4 [KKK] Let us go back to Example 3.2, where we considered the pair (X ,Y ) of
continuous random variables with joint density

f (x,y) = n(n−1)(y− x)n−2 for 0≤ x≤ y≤ 1,

where n > 2 is an integer. In Example 3.2, we derived the conditional expected value

E[Y | X = x] =
n−1+ x

n
.

Then, the law of iterated expectations tells us that, by computing the expected valued of the con-
ditional expected value E[Y | X = x] over X = x, we should obtain the unconditional expectation
E[Y ]. Let us then verify this implication for this particular random pair.

On the one hand, note that the marginal density of X is given by

f2(y) =
∫

X
f (x,y)dx = n(n−1)

∫ x=y

x=0
(y− x)n−2dx

= n(n−1)

[
− (y− x)n−1

n−1

]x=y

x=0

= nyn−1

for 0≤ y≤ 1. Therefore,

E[Y ] =
∫ y=1

y=0
nyyn−1dy =

n
n+1

[
yn+1

]y=1

y=0
=

n
n+1

.

On the other hand, recall that we derived in Example 3.2 the marginal density f1(x) =

n(1− x)n−1 of X . Then, we can compute

E[E[Y | X = x]] =
∫ x=1

x=0
(n−1+ x)(1− x)n−1dx.

To compute the integral above, note that

(n−1+ x)(1− x)n−1 = n(1− x)n−1− (1− x)n.
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Therefore,

E[E[Y | X = x]] = n
∫ x=1

x=0
(1− x)n−1dx−

∫ x=1

x=0
(1− x)ndx

=
[
− (1− x)n

]x=1

x=0
+

1
n+1

[
(1− x)n+1

]x=1

x=0

= 1− 1
n+1

=
n

n+1
.

We thus observe that E[E[Y | X = x]] = E[Y ] = n/(n+1). �

More generally, the expected value is just one out of a (countable) family of indicators
that gives us some information about the shape of the corresponding distribution. If X is a
random variable with density f and Y = g(X) is another random variable with density h, then
the expected value of the transformation g(X) is given by

E[g(X)] =
∫

X
g(x) f (x)dx =

∫
g(X)

yh(y)dy.

To obtain the expression of our family of quantities of interest, let us consider g(X) = X r, where
r is any positive integer.

Definition 3.2 The moment of order r ∈ {1,2, . . .} of the random variable X with density f

is the number

mr(X) =
∫

X
xr f (x)dx.

Observation 3.3 Of course, we should be concerned about the fact that the integral above may
not exist for some integers r = 1,2, . . . . Let us propose a sufficient condition for the existence
of moments of a distribution. Notice first that |x|k ≤ |x|r +1 for each k = 1, . . . ,r. Therefore,
we know that

∫
X |x|

r f (x)dx < ∞ implies that
∫

X |x|
k f (x)dx < ∞ for each k = 1, . . . ,r. Then,

since |x|r f (x)≥ xr f (x), we obtain that∫
X
|x|r f (x)dx < ∞

is a sufficient condition for the existence of all moments of order k = 1, . . . ,r of the random
variable X .

We observe that the expected value of a random variable µ =E[X ] coincides with its first moment,
m1(X). Another quantity that is extensively used to study certain features of a distribution is its



72 Chapter 3. Expected Values and Moments of Distributions [K]

variance.

Definition 3.3 The variance of a random variable X with density f is the number

Var[X ] = E[(X−µ)2] =
∫

X
(x−µ)2 f (x)dx.

As in the case of the expected value, many applications use σ2
X (or simply of σ ) to denote instead

the variance of the random variable X . Naturally, the positive square root σX of the variance σ2
X

of a random variable X also provides us with a measure of the dispersion of X . This measure σX

is commonly known as the standard deviation of the random variable X .

Observation 3.4 The variance of a random variable gives us a measure of its average
dispersion, weighted according to its distribution, with respect to its expected value. Some
straightforward algebra leads to

Var[X ] =
∫

X
x2 f (x)dx−

(∫
X

x f (x)dx
)2

= E[X2]−µ
2 = m2(X)−m2

1(X).

Therefore, moments up to order 2 can be used to study the dispersion of a distribution.
Similarly, the moment of order 3 is used in many applications to measure how asymmetric
a distribution is with respect to its expected value (the skewness of the distribution) and the
moment of order 4 can be used to measure the weight to the tail of the distribution (its kurtosis).
In this sense, our knowledge about the shape of a distribution improves with the number of its
moments that we are able to obtain. Intuitively, if we were close to know all the moments of a
distribution, this would be equivalent to have full information about the entire shape of the
distribution. On the other hand, even very small differences in two distributions should give
us some differences in their moments. Theorem 4.2 in Subsection chapter 4 will provide us
with an interesting characterization result that can be viewed as a formal statement of such an
intuition.

3.1 Covariance and Correlation [K]
Subsection section 2.6 presented the case where two random variables X and Y were independent.
Here the odds of occurrence of the events captured by one of the variables did not affect the
probability of occurrence of the events described by the other variable. Suppose now that we
know that the two random variables X and Y are indeed not independent. In this case, it would be
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very interesting to have some measure about the extent to which the probabilities of occurrence
of events along both dimensions are related. The notions of covariance and correlation allow us
to study the degree of relation between two random variables in terms of their distributions. For
two random variables X and Y with joint density f (x,y), the covariance between them is

Cov[X ,Y ] =
∫

X

∫
Y
(x−µX)(y−µY ) f (x,y)dxdy. (3.1)

Given this definition, the correlation coefficient of the two random variables is the ratio

ρ(X ,Y ) =
Cov[X ,Y ]

σX σY
.

If Cov[X1,X2] = 0, which in turn implies that ρ(X ,Y ) = 0 for finite standard deviations σX , σY ,
then we say that the random variables X and Y are uncorrelated.

Observation 3.5 What is the relationship between independence of two random variables
and their correlation? Consider two random variables X and Y with density f . By applying
the definition of covariance in (Eq. (3.1)) above, we obtain

Cov[X ,Y ] =
∫

X

∫
Y
(x−µX)(y−µY ) f (x,y)dxdy

=
∫

X

∫
Y

xy f (x,y)dxdy+µX µY

−µX

∫
Y

y f2(y)dy−µY

∫
X

x f1(x)dx

= E[X ·Y ]−µX µY .

(3.2)

Suppose that the random variables X and Y are independent. Then, we have E[X ·Y ] =
E[X ]E[Y ] so that, using the equality obtained in (Eq. (3.2)) above, it necessarily follows
that Cov[X ,Y ] = 0. Therefore, independence of two random variables implies that they are
uncorrelated. However, two uncorrelated random variables need not be independent in general.

On the one hand, positive values of Cov[X ,Y ] indicate that, according to their odds of
occurrence, Y tends to increase as X does. On the other hand, negative values of Cov[X ,Y ]

indicate that Y tends to decrease when X increases. Higher values of Cov[X ,Y ] in absolute terms
reflect higher degrees of relation in the odds of occurrence of the events described by X and Y .
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Observation 3.6 To gain intuition about the idea behind the correlation of two random
variables, consider the special case where X and Y are indicator functions, respectively, of
whether any of two events A and B occurs. Thus, X = 1 whenever A occurs and Y = 1 whenever
B occurs. Notice that, in this case, the product X ·Y is either one, when both events A and
B occur (that is, with probability P(X = 1,Y = 1)), or zero, when any of the events does not
occur. Then, by applying the expression derived for the covariance in (Eq. (3.2)) above to this
discrete case, we see that

Cov[X ,Y ] = P(X = 1,Y = 1)−P(X = 1)P(Y = 1) = f (1,1)− f1(1) f2(1).

Therefore, we obtain that Cov[X ,Y ]> 0 if and only if

f (1,1)> f1(1) f2(1)⇔
f (1,1)
f2(1)

> f1(1)⇔ P(X = 1 |Y = 1)> P(X = 1).

In other words, positive covariance between X and Y in this example indicates that if event B

occurs, this increases the probability of occurrence of A.

The correlation coefficient of two random variables gives us exactly the same qualitative
information about relation between the variables as their covariance. By dividing the covariance
over the product of the standard deviations, we obtain a normalization of the measure described
by the covariance that, furthermore, is restricted to lie in the interval [−1,1]. As we have already
seen, if the variables are independent, then their correlation is zero. On the other hand, values
of the correlation coefficient that tend to 1 indicate high positive dependence in terms of the
probabilities of occurrence of the events captured by the random variables. Values that tend to
−1 reflect high negative dependence. The following result is useful to see that the correlation
coefficient indeed lies between −1 and 1.

Theorem 3.1 — Schwarz’s Inequality. [K] Let W and Z be two random variables, then

(
E[W ·Z]

)2 ≤ E[W 2]E[Z2].

Proof of Theorem 3.1. Note first that if either E[W 2] = 0 or E[Z2] = 0, then the inequality in
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the Theorem above holds directly. Thus, suppose that E[Z2] 6= 0. Then, we obtain

0≤E

[(
W − E[W ·Z]

E[Z2]
·Z
)2
]
= E

[
W 2 +

(
E[W ·Z]

)2

(E[Z2])2 ·Z
2−2

E[W ·Z]
E[Z2]

·W ·Z

]
=

= E[W 2]−
(
E[W ·Z]

)2

E[Z2]
⇒
(
E[W ·Z]

)2 ≤ E[W 2]E[Z2],

as stated.

Observation 3.7 Given two random variables X and Y , we can construct another pair of
random variables (W,Z) as W = X−µX and Z =Y −µY , and then apply the result of Theorem
3.1 above to the variables W , Z. We then obtain(

E[(X−µX)(Y −µY )]
)2 ≤ E

[
(X−µX)

2]E[(Y −µY )
2]

⇔

 E[(X−µX)(Y −µY )]√
E
[
(X−µX)2

]
E
[
(Y −µY )2

]
2

≤ 1 ⇒ |ρ(X ,Y )| ≤ 1.

3.2 Practice Exercises

Exercise 3.1 Let X be a continuous random variable with density f (x) = 1/2 for x ∈ (−1,1].
Let Y = X2. Show that X and Y are uncorrelated but not independent.

Exercise 3.2 Let (X ,Y ) be a continuous random vector with joint density

f (x,y) =
1

2πσxσy
√

1−ρ2
exp{Q} ,

where

Q =− 1
2(1−ρ2)

[
(x−µx)

2

σ2
x

+
(y−µy)

2

σ2
y

−2ρ
(x−µx)(y−µy)

σxσy

]
.

Show that

fX |y(x) =
1

√
2π
√

(1−ρ2)σ2
x

exp

{
− 1

2(1−ρ2)σ2
x

[
(x−µx)−ρ

σx

σy
(y−µy)

]2
}
.
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Exercise 3.3 Let X be a random variable on some probability space (Ω ,F ,P) which takes
only the values 0, 1, 2, . . . . Show that E[X ] = ∑

∞
n=1 P(X ≥ n).

Exercise 3.4 Let X be a continuous random with X = [0,b], where b > 0, with distribution
function F , and with density function f . Show that

E[X ] =
∫ b

0
[1−F(x)]dx.

Exercise 3.5 Let X and Y be random variables with joint density

f (x,y) =

c if x2 + y2 ≤ 1

0 if x2 + y2 > 1.

Find the conditional density of X given Y = y and compute the conditional expected value
E[X |Y = y].

Exercise 3.6 Let X1, . . . ,Xn be independent random variables having a common density with
mean µ and variance σ2. Set Xn = (X1 + · · ·+Xn)/n.
(a) By writing Xk−Xn = (Xk−µ)− (Xn−µ), show that

n

∑
k=1

(Xk−Xn)
2 =

n

∑
k=1

(Xk−µ)2−n(Xn−µ)2.

(b) From (a) obtain

E
[ n

∑
k=1

(Xk−Xn)
2
]
= (n−1)σ2.

Exercise 3.7 Let X and Y be two random variables (on some probability space (Ω ,F ,P))
such that P(|X−Y | ≤ a) = 1 for some constant a ∈ R. Show that |E[X ]−E[Y ]| ≤ a.

Exercise 3.8 Show that Var[aX ] = a2Var[X ] for any random variable X and constant a ∈ R.
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Exercise 3.9 Let X and Y be two continuous random variables with joint density

f (x,y) =

ρ2e−ρy if 0≤ x≤ y,

0 otherwise,

where ρ > 0. Find the conditional density fY |x(y).

Exercise 3.10 Let X and Y be two continuous random variables with joint density

f (x,y) = ce−(x
2−xy+y2)/2,

for each x,y ∈ R. Find the conditional expected value of Y given X = x, E[Y | X = x].
Hint: Use the Gaussian integral identity:

∫+∞

−∞
e−z2

dz =
√

π .

Exercise 3.11 Let X and Y be two continuous random variables with joint density

f (x,y) =

n(n−1)(y− x)n−2 if 0≤ x≤ y≤ 1,

0 otherwise.

Find the conditional expected value of X given Y = y, E[X | Y = y].





4. Moment Generating Functions [KK]

In chapter 3, some arguments hinted that the family of all moments of a random variable
provides us with very detailed information about its distribution. More formally, there exist
two functions, or transformations, that generate the moments of a random variable (or random
vector). Furthermore, each of these two function completely characterizes its distribution. In
consequence, working with such any of these transformations is equivalent to having access to the
distribution itself. The main caveat of these functions is that they lack a intuitive interpretation.
Nonetheless, they turn very convenient to obtain results regarding particular distributions. Since
they fully characterize multidimensional distributions, these functions are particularly helpful
both to study independence of random variables and to derive key results when the involved
random variables are indeed independent. From a practical point of view, these functions also
allow us to derive moments of a random variable without the need of computing the integral
required in the definition.

The simplest of these functions, and perhaps the most used of the two, is referred to as the
moment generating function.

Definition 4.1 The moment generating function of a random variable X with density f is a
function φX : R→ R specified as

φX(t) = E
[
etX]= ∫

X
etx f (x)dx

for each t ∈ R for which φX(t) is finite.

Closely related to the moment generating function, there is the other transformation that allows
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us to obtain the moments of a distribution. This transformation is known as the characteristic

function of the random variable.

Definition 4.2 The characteristic function of a random variable X with density f is a function
ϕX : R→ R specified as

ϕX(t) = E
[
eitX]= ∫

X
eitx f (x)dx.

Technically, while the moment generating function involves the function etX , known as the
Laplace transformation of the random variable, the characteristic function uses a complex
version of such a function, which is commonly known as the Fourier transformation. The
characteristic function has the advantage that it always exists because the transformation eitx is
bounded. However, for tractability reasons, most applications resort to the moment generating
function of a distribution rather than to its characteristic function. Given that it always exists,
the characteristic function is more often used in formal argument to obtain general results about
distributions.

Observation 4.1 To see how the moment generating function can be used to easily compute
the moments of the corresponding distribution, let us invoke the Taylor expansion result

etX = 1+ tX +
t2X2

2!
+

t3X3

3!
+ · · ·=

∞

∑
k=0

tkXk

k!
.

Now, suppose that function exists φX(t) throughout some interval (−t̄, t̄), for t̄ > 0. Then, we
obtain

φX(t) =
∞

∑
k=0

tk

k!
E[Xk] for t ∈ (−t̄, t̄).

Therefore, the moment of order r of the random variable X can simply be calculated by taking
the r-th order derivative of the function φ(t) and them by substituting t = 0, that is,

mr(X) = φ
(r)
X (t)

∣∣∣
t=0

. (4.1)

Similarly, if the moment generating function of a random variable X exists for all t ∈ R, then
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the characteristic function of such random variable can be written as

ϕX(t) =
∞

∑
k=0

(it)k

k!
E[Xk],

an expression that can be used to obtain the order r moment of X in a totally analogous way,
that is, it requires that we first calculate the r-th order derivative of ϕX(t) and then substitute
t = 0. In particular, the analogue of the derivation in (Eq. (4.1)), when using instead the
characteristic function, is

mr(X) = i−r
ϕ
(r)
X (t)

∣∣∣
t=0

.

The definition of moment generating function can be extended readily to random vectors. If
X = (X1, . . . ,Xn) is a random vector joint density f , the moment generating function of X is now
a vector-valued function φX : Rn→ R, specified as

φX(t1, . . . , tn) =
∫
· · ·
∫

X

e(t1x1+···+tnxn) f (x1, . . . ,xn)dx1 · · · dxn

for each (t1, . . . , tn) ∈Rn for which φX(t1, . . . , tn) is finite. Using the theory of Taylor expansions,
exactly as in the case of a random variable, one obtains

∂ rφX(0, . . . ,0)
∂ tr

i
=
∫
· · ·
∫

X

xr
i f (x1, . . . ,xn)dx1 · · · dxn

=
∫

Xi

xr
i

∫
· · ·
∫

Rn−1

f (x1, . . . ,xn)dx1 · · · dxn

=
∫

Xi

xr
i fi(xi)dxi = mr(Xi).

The can also work with the analog concepts for the characteristic function. If X = (X1, . . . ,Xn) is
a random vector joint density f , the characteristic function of X is now a vector-valued function
ϕX : Rn→ R, specified as

ϕX(t1, . . . , tn) =
∫
· · ·
∫

X

e∑
n
k=1 itkxk f (x1, . . . ,xn)dx1 · · · dxn.

Then, using the theory of Taylor expansions, we obtain

∂ rϕX(0, . . . ,0)
∂ tr

k
= i−rmr(Xk).
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The moment generating function, or the characteristic function, of a random vector can be
used to the study whether a set of random variables are independent or not. Suppose that the
random variables X1, . . . ,Xn are independent and that each Xi has a moment generating function
φi(Xi) = E[etiXi] for each ti ∈ (−t̄, t̄), for t̄ > 0. It then follows that E[e∑

n
i tiXi] = ∏

n
i=1 E[etiXi] so

that the moment generating function of the random vector can be decomposed as the product
of the moment generating functions of its components. The same argument applies for the
corresponding characteristic function as well. Formally, we have

Theorem 4.1 [K] Let X = (X1, . . . ,Xn) be a random vector with moment generating function
φX(t1, . . . , tn) for each ti ∈ (−t̄, t̄), for some t̄ > 0, and with characteristic function ϕX(t1, . . . , tn).
Then, the random variables X1, . . . ,Xn are independent if and only if

φX(t1, . . . , tn) =
n

∏
i=1

φXi(ti)

for each ti ∈ (−t̄, t̄), or, equivalently, if and only if

ϕX(t1, . . . , tn) =
n

∏
i=1

ϕXi(ti).

The following example deals with the application of the moment generation function to indepen-
dent random variables.

� Example 4.1 [K] Let X1,X2, . . . ,Xk be a set of discrete random variables with common
(discrete) density function

f (x) =
(

n
x

)
px(1− p)n−x, for x ∈ {0,1,2, . . . ,n} ,

where n≥ 1 is an integer and p ∈ (0,1). In Chapter chapter 5, it will be shown that the moment
generating function of each Xi is given by

φXi(t) = [(1− p)+ pet ]n.

Suppose that the random variables X1,X2, . . . ,Xk are independent. Then, the moment generating
function of the random variable X = ∑

k
i Xi can be easily obtained as

φX(t) = E[et ∑
k
i=1 Xi] = E[Π k

i=1etXi]

= Π
k
i=1E[etXi] = Π

k
i=1[(1− p)+ pet ]n = [(1− p)+ pet ]kn.
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It follows then that the random variable X has density function

f (x) =
(

kn
x

)
px(1− p)kn−x, for x ∈ {0,1,2, . . . ,kn} .

�

Finally, as mentioned earlier, the moment generating function, or the characteristic func-
tion, of a random variable can be used to characterize the distribution of the random vari-
able.

Theorem 4.2 — Inversion Theorem. [K] The moment generating function of a random vari-
able φX(t) (or its characteristic function ϕX(t)) uniquely determines its probability distribution,
provided that it exists for each t ∈ (−t̄, t̄), for some t̄ > 0.

Billingsley [1995] (Theorem 26.2) provides a constructive proof of this result for the case where
one considers the characteristic function.

The following example illustrates how the characterization result stated in Theorem 4.2
above can be exploited to find a particular probability distribution.

� Example 4.2 Let X be a continuous random variable with density function

f (x) =
1√
2π

e−x2/2 for −∞ < x < ∞,

which corresponds to a Normal Distribution, and let us consider the transformation Y = X2.
Suppose that we are interested in obtaining the moment generating function of the random
variable Y . We can compute

φY (t) = E[etX2
] =

1√
2π

∫ +∞

−∞

e−(
1−2t

2 )x2
dx.

To calculate the integral above, we can use the following change of variables

z =
(√

1−2t√
2

)
x, dx =

√
2√

1−2t
dz.

In this case, we obtain

1√
2π

∫ +∞

−∞

e(
2t−1

2 )x2
dx =

1√
2π

√
2√

1−2t

∫ +∞

−∞

e−z2
dz.

Now, we can make use of the identity of the Gaussian integral identity, which states that
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−∞
e−z2

dz =
√

π , to obtain

φY (t) = (1−2t)−1/2 for t < 1/2.

This particular moment generating function is known to corresponds to a continuous random
variable with density function

h(y) =
1√
2πy

e−y/2, for y > 0.

As we will see later, the above expression corresponds to the density of a distribution known as
Chi-Square with parameter 1. In fact, this distribution already appeared in Example 2.9. �

4.1 Practice Exercises

Exercise 4.1 Let (X1,X2) be a random vector. Using the concept of moment generating
function, show that

Cov[X1,X2] =
∂ 2Φ(X1,X2)(0,0)

∂ t1∂ t2
−

∂Φ(X1,X2)(0,0)
∂ t1

·
∂Φ(X1,X2)(0,0)

∂ t2
.

Exercise 4.2 Let X be a random variable which takes only the values 0, 1, 2, . . . . Show that,
for t ∈ (−1,1), ΦX(t) = E[tx], Φ ′X(t) = E[xtx−1], and Φ ′′X(t) = E[x(x−1)tx−2].
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5.1 Some Discrete Distributions [K]

We begin with some discrete distributions that appear when we consider a class of experiments
known as Bernoulli trials. A Bernoulli trial is a random experiment with two possible mutually
exclusive outcomes. Without loss of generality we can call these outcomes “success” and “failure”
(e.g., defective or non-defective, female or male). Denote by p ∈ (0,1) the probability of success.
A sequence of independent Bernoulli trials, in the sense that the outcome of any trial does not
affect the outcome of any other trial, are called binomial or Bernoulli trials.

5.1.1 The binomial distribution

Let X be the random variable associated with the number of successes in the n outcomes of
a sequence of Bernoulli trials. The number of ways of selecting x successes out of n trials is(n

x

)
. Since trials are independent and the probability of each of these ways is px(1− p)n−x, the

discrete density function of X is given by

f (x) = P(X = x) =
(

n
x

)
px(1− p)n−x for x = 0,1,2, . . . ,n.

Recall that this density function was obtained earlier in Example 2.3. The probability distribution
of X is called binomial distribution and we write X ∼ b(n, p). Using the fact that, for a positive
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integer n, (a+b)n = ∑
n
x=0
(n

x

)
bxan−x, we can obtain

ΦX(t) =
n

∑
x=0

etx
(

n
x

)
px(1− p)n−x =

n

∑
x=0

(
n
x

)
(pet)x(1− p)n−x = [(1− p)+ pet ]n.

Then,

Φ
′
X(t) = n[(1− p)+ pet ]n−1 pet

and

Φ
′′
X(t) = n(n−1)[(1− p)+ pet ]n−2 p2e2t +n[(1− p)+ pet ]n−1 pet .

It follows that

E[X ] = m1(X) = Φ
′(0) = n[1− p+ p]n−1 p = np

and

Var[X ] = m2(X)−m2
1(X) = Φ

′′
X(0)−

(
E[X ]

)2

= n(n−1)[1− p+ p]n−2 p2 +np−n2 p2

= n2 p2−np2 +np−n2 p2

= np(1− p).

Observation 5.1 Consider the special case of a Bernoulli distribution that one obtains when
n = 1. Then, X is the random variable associated with the outcome of a single Bernoulli
trial so that X(success) = 1 and X(failure) = 0. The probability distribution of X is called
Bernoulli distribution. We write X ∼ b(1, p) and the discrete density function of X is

f (x) = P(X = x) = px(1− p)1−x for x = 0,1.

We can compute compute

E[X ] = (0)(1− p)+(1)(p) = p;

Var[X ] = (0− p)2(1− p)+(1− p)2(p) = p(1− p);
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ΦX(t) = et(0)(1− p)+ et(1)(p) = 1+ p(et−1).

Notice that the binomial distribution can be also considered as the distribution of the sum
of n independent, identically distributed Xi ∼ b(1, p) random variables. For a sequence of
n Bernoulli trials, let Xi be the random variable associated with the outcome of the ith trial
so that Xi(success) = 1 and Xi(failure) = 0. Clearly, the number of successes is given by
X = X1 + · · ·+Xn. Following this approach, we obtain

E[X ] =
n

∑
i=1

E[Xi] = np

and

Var[X ] = Var
[ n

∑
i=1

Xi

]
= np(1− p).

Some insights of the observation above are summarized in the next two results.

Theorem 5.1 [K] Let Xi ∼ b(ni, p), i = 1, . . . ,k, be independent random variables. Then,

Yk =
k

∑
i=1

Xi ∼ b(
k

∑
i=1

ni, p).

Corollary 5.1 Let Xi ∼ b(n, p), i = 1, . . . ,k, be independent random variables. Then,

Yk =
k

∑
i=1

Xi ∼ b(kn, p).

This logic behind this result was already used in Example 2.3.

5.1.2 The negative binomial distribution

Consider now a sequence (maybe infinite) of Bernoulli trials and let X be the random variable
that describes the number of failures in the sequence before the rth success, where r ≥ 1. Then,
X + r is the number of trials necessary to produce exactly r successes. This will happen if and
only if the (X + r)th trial results in a success and among the previous (X + r−1) trials there are
exactly X failures or, equivalently, r−1 successes. We remark that we need to take into account
the probability that the (X + r)th trial results in a success. It follows by the independence of
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trials that

f (x) = P(X = x) =
(

x+ r−1
x

)
pr(1− p)x =

(
x+ r−1

r−1

)
pr(1− p)x for x = 0,1,2, . . .

We say that the random variable X has negative binomial distribution and write X ∼ NB(r, p).
For the special case given by r = 1, we say that X has geometric distribution and write X ∼G(p).
For the negative binomial distribution, we have

ΦX(t) = pr[1− (1− p)et ]−r;

E[X ] = r(1− p)/p;

Var[X ] = r(1− p)/p2.

� Example 5.1 [KK] Suppose that a mathematician carries two matchboxes, box 1 and box
2, containing k matches each. Each time he needs a match, he is equally likely to take it from
either box. Suppose that at a certain moment he reaches into box 1 and discovers that it is empty.
Then, what is the probability that there remains exactly r ≤ k matches in box 2? We can identify
“a match is taken from box 1” as failure and “a match is taken from box 2” as success. Thus,
we have a sequence of Bernoulli trials with p = 1/2. Note that, right before the moment at
which box 1 is empty and box 2 has r matches, there has been k+ k− r trials, k of which have
been failures and k− r of which have been successes. Then if X is the random variable which
identifies the number of failure before the (k− r)-th successes, we know that X ∼ NB(k− r,1/2).
Therefore

P(X = k) =
(

2k− r
k

)
(1/2)k−r(1/2)k =

(
2k− r

k

)
(1/2)2k−r for r = 0,1, . . . ,k.

Note that, in contrast with the density specification given above for the negative binomial
distribution, we are now interested exactly in the (k− r)-th success. Hence, the probability now
obtained is slightly different to what one would obtain applying directly the formula above. �

� Example 5.2 [KKK] Consider two independent geometric random variables X ,Y ∼G(p) and
suppose that we wish to compute the probability P(X = m |X +Y = n) for m ∈ {1,2, . . . ,n−1}.
First note that, by the definition of conditional probability, we have

P(X = m |X +Y = n) =
P({X = m}∩{X +Y = n})

P({X +Y = n})
.

Now, the event {X = m}∩{X +Y = m} in the numerator is equivalent to {X = m}∩{Y = n−m}
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and, since X and Y are independent, we have

P({X = m}∩{Y = n−m}) = P(X = m)P(Y = n−m).

As for the denominator, note that we can use the total probability law, together with the indepen-
dence of X and Y , to obtain:

P({X +Y = n}) =
n−1

∑
m′=1

P/X +Y = n |X = m′)P(X = m′)

=
n−1

∑
m′=1

P(Y = n−m′ |X = m′)P(X = m′)

=
n−1

∑
m′=1

P(Y = n−m′]P(X = m′).

Then, since X and Y have (identical) geometric distributions, we have:

P(X = m |X +Y = n) =
P(X = m)P(Y = n−m)

∑
n−1
m′=1 P(Y = n−m′)P(X = m′)

=
p(1− p)m p(1− p)n−m

∑
n−1
m′=1 p(1− p)n−m′ p(1− p)m′

=
(1− p)n

∑
n−1
m′=1(1− p)n

=
1

n−1
.

�

5.1.3 The multinomial distribution

The binomial distribution can be generalized to the multinomial distribution as follows. Suppose
that a random experiment is repeated n independent times. Each repetition of the experiment
results in on of k mutually exclusive and exhaustive events A1,A2, . . . ,Ak. Let pi be the probability
that the outcome (of any repetition) is an element of Ai and assume that each pi remains constant
throughout the n repetitions. Let Xi be the random variable associated with the number of
outcomes which are elements of Ai. Also, let x1,x2, . . . ,xk−1 be nonnegative numbers such
that x1 + x2 + · · ·+ xk−1 ≤ n. Then, the probability that exactly xi outcomes terminate in Ai,
i = 1,2, . . . ,k−1, and, therefore, xk = n− (x1 + x2 + · · ·+ xk−1) outcomes terminate in Ak is

P(X1 = x1, . . . ,Xk = xk) =
n!

x1!x2! · · ·xk!
px1

1 px2
2 · · · p

xk
k .
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This is the joint discrete density of a multinomial distribution.

5.1.4 The Poisson distribution

Let us first consider the Taylor expansion of the function h(r) = er. In particular, for each r ∈ R,
we have

er = 1+ r+
r2

2!
+

r3

3!
+ · · ·=

∞

∑
x=0

rx

x!
.

Then, given a real number r > 0, consider the function f : R→ R+ defined by

f (x) =
rxe−r

x!
for x = 0,1,2, . . .

One can check that

∞

∑
x=0

f (x) = e−r
∞

∑
x=0

rx

x!
= e−rer = 1.

Hence, f satisfies the conditions required for being a discrete density function. The distribution
associated to the density function above is known as the Poisson distribution and, for a random
variable X that follows such distribution, we write X ∼P(r). Empirical evidence indicates that
the Poisson distribution can be used to analyze a wide class of applications. In those applications
one deals with a process that generates a number of changes (accidents, claims, etc.) in a fixed
interval (of time or space). If a process can be modeled by a Poisson distribution, then it is
called a Poisson process. Examples of random variables distributed according to the Poisson
distributions are: (1) X indicates the number of defective goods manufactured by a productive
process in a certain period of time, (2) X indicates the number of car accidents in a unit of time,
and so on. For X ∼P(r), we have

E[X ] = Var[X ] = r

and

ΦX(t) =
∞

∑
x=0

etx rxe−r

x!
= e−r

∞

∑
x=0

(ret)x

x!

= e−reret
= er(et−1).
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Theorem 5.2 [K] Let Xi ∼P(ri), i = 1, . . . ,k, be independent random variables. Then,

Sk =
k

∑
i=1

Xi ∼P(r1 + · · ·+ rk).

The following results relate the Poisson with the binomial distribution.

Theorem 5.3 [KK] Let X ∼P(rx) and Y ∼P(ry) be independent random variables. Then
the conditional distribution of X given X +Y is binomial. In particular, (X |X +Y = n) ∼
b(n, rx

rx+ry
) (that is, for a sequence of n Bernoulli trials). Conversely, let X and Y are in-

dependent nonnegative integer-valued random variables with strictly positive densities. If
(X |X +Y = n)∼ b(n, p), then X ∼P(θ p/(1− p)) and Y ∼P(θ) for an arbitrary θ > 0.

Theorem 5.4 [K] If X ∼P(r) and (Y |X = x)∼ b(x, p), then Y ∼P(rp).

5.2 Some Continuous Distributions [K]

In this section we introduce some of the most frequently used continuous distributions and
describe their properties.

5.2.1 The uniform distribution

A random variable X is said to have uniform distribution on the interval [a,b] if its density
function is given by

f (x) =

 1
b−a if a≤ x≤ b;

0 otherwise.

We write X ∼U [a,b]. Intuitively, the uniform distribution is related to random phenomena where
the possible outcomes have the same probability of occurrence. One can easily obtain that

F(x) =


0 if x≤ a;
x−a
b−a if a < x≤ b;

1 if x > b.

E[X ] =
a+b

2
, Var[X ] =

(b−a)2

12
, and ΦX(t) =

etb− eta

t(b−a)
.
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� Example 5.3 Let X be a random variable with density

f (x) =

λe−λx if x > 0;

0 otherwise,

where λ > 0. One can easily obtain

F(x) =

0 if x≤ 0;

1− e−λx if x > 0.

Consider the transformation Y = F(X) = 1− e−λX . We note then: x = T (y) =− ln(1− y)/λ

and T ′(y) = 1/λ (1− y) so that the density of Y is given by

h(y) = f
(
T (y)

)∣∣T ′(y)∣∣
= λe−λ

(
−ln(1−y)/λ

) 1
λ (1− y)

= 1

for 0≤ y < 1. �

So, is it a mere coincidence that in the example above F(X) is uniformly distributed on the
interval [0,1]? The following theorem answers this question and provides us with a striking
result about the uniformity of the distribution of any distribution function.

Theorem 5.5 [K] Let X be a random variable with a continuous distribution function F . Then
F(X) is uniformly distributed on [0,1]. Conversely, let F be any distribution function and let
X ∼U [0,1]. Then, there exists a function g : [0,1]→R such that g(X) has F as its distribution
function, that is, P(g(X)≤ x) = F(x) for each x ∈ R.

5.2.2 The Γ , χ2, and Beta distributions

It is a well known that the integral

Γ (α) =
∫

∞

0
yα−1e−ydy

yields a finite positive number for α > 0. Then, integration by parts gives us

Γ (α) = (α−1)
∫

∞

0
yα−2e−ydy = (α−1)Γ (α−1).
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Thus, if α is a positive integer, then

Γ (α) = (α−1)(α−2) · · ·(2)(1)Γ (1) = (α−1)!.

Let us now consider another parameter β > 0 and introduce a new variable by writing y = x/β .
Then, we have

Γ (α) =
∫

∞

0

(
x
β

)α−1

e−
x
β

(
1
β

)
dx

Therefore, we obtain

1 =
∫

∞

0

1
Γ (α)β α

xα−1e−x/β dx.

Hence, since Γ (α),α,β > 0, we see that

f (x) =

 1
Γ (α)β α xα−1e−x/β if x > 0;

0 otherwise

is a density function of a continuous random variable. A random variable X with the density
above is said to have the gamma distribution and we write X ∼Γ (α,β ). The gamma distribution
is often used to model waiting times. The special case when α = 1 yields the exponential distri-

bution with parameter β . In that case, we write X ∼ exp(β )≡ Γ (1,β ) and the corresponding
density function is, therefore,

f (x) =

 1
β

e−x/β if x > 0.

0 otherwise

Then, the corresponding distribution function can be computed as

F(x) =

0 if x≤ 0;
1

Γ (α)β α

∫ x
0 yα−1e−y/β dy if x > 0.
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The corresponding moment generating function is obtained as follows. First,

ΦX(t) =
∫

∞

0
etx 1

Γ (α)β α
xα−1e−x/β dx

=
∫

∞

0

1
Γ (α)β α

xα−1e−x(1−β t)/β dx.

Second, by setting y = x(1−β t)/β or, equivalently,

x =
βy

1−β t
and dx =

β

1−β t
dy,

we obtain

ΦY (t) =
∫

∞

0

β/(1−β t)
Γ (α)β α

(
βy

1−β t

)α−1

e−ydy

=
1

(1−β t)α ·
1

Γ (α)

∫
∞

0
yα−1e−ydy =

1
(1−β t)α for t < 1/β .

Therefore, for the gamma distribution, we obtain

E[X ] = Φ
′
X(0) = αβ and Var[X ] = Φ

′′
X(0)−

(
E[X ]

)2
= α(α +1)β 2−α

2
β

2 = αβ
2.

We turn now to consider the special case of the gamma distribution when α = r/2, for some
positive integer r, and β = 2. This gives the distribution of a continuous random variable X with
density

f (x) =


1

Γ (r/2)2r/2 xr/2−1e−x/2 if x > 0;

0 otherwise.

This distribution is called the chi-square distribution and we write X ∼ χ2(r) where, for no
obvious reason, r is called the number of degrees of freedom of the distribution. The moment
generating function of the chi-square distribution is

ΦX(t) =
1

(1−2t)r/2 for t < 1/2,

and its expected value and variance are, respectively, E[X ] = r and Var[X ] = 2r.
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Theorem 5.6 [K] Let Xi ∼ Γ (αi,β ), i = 1, . . . ,k, be independent random variables. Then,
Yk = ∑

k
i=1 Xi ∼ Γ (∑k

i=1 αi,β ).

Theorem 5.7 [K] Let X ∼U [0,1]. Then, Y =−2lnX ∼ χ2(2).

Theorem 5.8 [K] Let X ∼ Γ (αx,β ) and Y ∼ Γ (αy,β ) be two independent random variables.
Then, X +Y and X/Y are independent random variables and X +Y and X/(X +Y ) are also
independent random variables.

Theorem 5.9 [K] Let {Xn}∞

n=1 be a sequence of independent random variables such that
Xn ∼ exp(β ) for each n = 1,2, . . . . Let Yn = ∑

n
i=1 Xi for n = 1,2, . . . and let Z be the random

variable corresponding to the number of Yn ∈ [0, t] for t > 0. Then Z ∼ P(t/β ).

The Beta distribution is another important distribution related with the gamma distribution.
Let U,V be two independent random variables such that U ∼ Γ (α,1) and V ∼ Γ (β ,1) The joint
density function of (U,V ) is then

h(u,v) =
1

Γ (α)Γ (β )
uα−1vβ−1e−u−v, for 0 < u,v < ∞.

Consider the change of variables given by X =U/(U +V ) and Y =U +V . Using the “change
of variables formula,” one obtains

f (x,y) =
1

Γ (α)Γ (β )
xα−1(1− x)β−1yα+β−1e−y, for 0 < x < 1 and 0 < y < ∞.

The marginal distribution of X is then

f1(x) =
xα−1(1− x)β−1

Γ (α)Γ (β )

∫
∞

0
yα+β−1e−ydy

=
Γ (α +β )

Γ (α)Γ (β )
xα−1(1− x)β−1 for 0 < x < 1.

The density function above is that of the beta distribution with parameters α and β , and we write
X ∼ B(α,β ). Now, it follows from Theorem 5.8 above that X and Y are independent random
variables. Therefore, since f (x,y) = f1(x) f2(y), it must be the case that

f2(y) =
1

Γ (α +β )
yα+β−1e−y, for 0 < y < ∞.
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The function f2(u) above corresponds to the density function of a gamma distribution such that
Y ∼ Γ (α +β ,1).

It can be checked that the expected value and the variance of X , which has a beta distribution,
are given by

E[X ] =
α

α +β
and Var[X ] =

αβ

(α +β +1)(α +β )2 .

There is no closed expression for the moment generating function of a beta distribution.
The intuition given above regarding the relation between the gamma and the beta distributions

can be extended by the following result.

Theorem 5.10 [K] Let U ∼ Γ (α,γ) and V ∼ Γ (β ,γ) be two independent random variables.
Then X =U/(U +V )∼ B(α,β ).

5.2.3 The normal distribution
We introduce now one of the most important distributions in the study of probability and math-
ematical statistics, the normal distribution. The Central Limit Theorem shows that normal
distributions provide a key family of distributions for applications and for statistical infer-
ence.

Definition 5.1 A random variable X is said to have the normal distribution if its density
function is given by

f (x) =
1√

2πσ
exp

{
−1

2

(
x−µ

σ

)2
}
.

The parameters µ and σ2 correspond, respectively, to the mean and variance of the distribution.
We write X ∼ N(µ,σ2). The standard normal distribution is the normal distribution obtained
when µ = 0 and σ2 = 1.

Observation 5.2 Suppose that X ∼ N(0,1) and consider the transformation Y = a+bX for
b > 0. Using the “change of variable formula,” we can derive the expression for the density
function of Y as

h(y) = f
(

y−a
b

)
1
b
=

1
b
· 1√

2π
exp

{
−1

2

(
y−a

b

)2
}
,



5.2 Some Continuous Distributions [K] 97

so that Y ∼ N(a,b2). For a = µ and b2 = σ2 one can obtain the converse implication by
applying the “change of variable formula” too.

The following result is an implication of the above observation.

Theorem 5.11 [K] A random variable X has a N(µ,σ2) distribution if and only if the random
variable (X−µ)

/
σ has a N(0,1) distribution.

Observation 5.3 Using the result in Theorem 5.11, we can obtain the moment generating
function of a random variable X ∼ N(µ,σ2) by using the fact that X = σZ + µ for some
random variable Z ∼ N(0,1). This is done as follows. First, note that

ΦX(t) = E[etX ] = E[etσZ+tµ ] = etµE[etσZ]

= eµt
∫ +∞

−∞

etσz 1√
2π

e−z2/2dz.

Second, we compute the integral above as

∫ +∞

−∞

etσz 1√
2π

e−z2/2dz = eσ2t2/2
∫ +∞

−∞

1√
2π

e−(z−σt)2/2dz

= eσ2t2/2
∫ +∞

−∞

1√
2π

e−s2/2ds

= eσ2t2/2,

using the change of variable s = z−σt and the fact that
∫+∞

−∞
1/
√

2πe−s2/2ds = 1. Therefore,
we finally obtain

ΦX(t) = eµteσ2t2/2 = eµt+σ2t2/2.

While many applications require us to work with normal distributions, normal density
functions usually contain a factor of the type e−s2

. In consequence, antiderivatives
∫

e−s2
ds

cannot be obtained in closed form and, thus, we need to resort to numerical integration techniques
instead. Given the relation between a normal distribution and the standard normal distribution,
we make use of numerical integration computations as follows. Consider a random variable
X ∼ N(µ,σ2), denote by F its distribution function and by H(z) =

∫ z
−∞

1/
√

2πe−s2/2ds the
distribution function of the random variable Z = (X−µ)/σ ∼ N(0,1). Now, suppose that we
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wish to compute F(x) = P(X ≤ x). Then, we use the fact that

P(X ≤ x) = P
(

Z ≤ x−µ

σ

)
= H

(
x−µ

σ

)
.

Therefore, all that we need are numerical computations for the distribution function H(z) of a
standard normal N(0,1). Such computations are provided by tables for the normal N(0,1).

We close this section with a few important results concerning normal distributions.

Theorem 5.12 [K] Let X be a standard normal random variable. Then,

P(X > x)≈ 1√
2πx

e−x2/2 as x→ ∞.

Theorem 5.13 [K] If X and Y are independent normally distributed random variables, then
X +Y and X−Y are independent.

Theorem 5.14 [K] Let Xi ∼ N(µi,σ
2
i ), i = 1, . . . ,n, be independent random variables. Then,

for α1, . . . ,αn ∈ R, we have

n

∑
i=1

αiXi ∼ N

(
n

∑
i=1

αiµi,
n

∑
i=1

α
2
i σ

2
i

)
.

Theorem 5.15 [K] If X ∼ N(µ,σ2), then (X−µ)2/σ2 ∼ χ2(1).

The proof of the result above has already been illustrated in Examples 23 and 29.

6.2.4. The multivariate normal distribution

Here we consider the generalization of the normal distribution to random vectors.

Definition 5.2 A random vector X = (X1, . . . ,Xn) is said to have the n-variate normal

distribution if its density function is given by

f (x) = f (x1, . . . ,xn) =
1

(2π)n/2 |Σ |1/2 exp
{
−1

2
(x−µ)′Σ−1(x−µ)

}
,

where Σ ∈ Rn×Rn is a symmetric, positive semi-definite matrix and µ = (µ1, . . . ,µn) ∈ Rn.
We write X = (X1, . . . ,Xn) ∼ N(µ,Σ). The vector is µ is called the mean vector and the
matrix Σ is called the dispersion matrix or variance-covariance matrix of the multivariate
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distribution.

Observation 5.4 The special case n = 2 yields the bivariate normal distribution. Consider a
random vector (X ,Y )∼ N(µ,Σ), where

µ =

(
µx

µy

)
and Σ =

(
σ2

x σxy

σxy σ2
y

)
.

Here σxy denotes the covariance between X and Y . Thus, if ρ is the correlation coefficient
between X and Y , then we have σxy = ρσxσy, where the symbol σk stands for the standard

deviation, σk =+(σ2
k )

1/2, of the corresponding random variable k = x,y. After noting these
notational rearrangements, matrix Σ above can be easily inverted to obtain

Σ
−1 =

1
σ2

x σ2
y (1−ρ2)

(
σ2

y −ρσxσy

−ρσxσy σ2
x

)
.

Therefore, the joint density function of (X ,Y ) is

f (x,y) =
1

2πσxσy
√

1−ρ2
exp{Q} ,

where

Q =− 1
2(1−ρ2)

[(
x−µx

σx

)2

−2ρ

(
x−µx

σx

)(
y−µy

σy

)
+

(
y−µy

σy

)2
]
.

The following result is crucial to analyze the relation between a multivariate normal distribu-
tion and its marginal distributions.

Theorem 5.16 [K] Let X ∼ N(µ,Σ) such that X , µ , and Σ can be partitioned as

X =

(
X1

X2

)
, µ =

(
µ1

µ2

)
and Σ =

(
Σ11 Σ12

Σ21 Σ22

)
.

Then, Xs ∼ N(µs,Σss), s = 1,2. Moreover, X1 and X2 are independent random vectors if and
only if Σ12 = Σ21 = 0.

The result in the theorem above tells us that any marginal distribution of a multivariate normal
distribution is also normal and, further, its mean and variance-covariance matrix are those
associated with that partial vector. It also asserts that, for the normal case, independence of the
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random variables follows from their no correlation.

Observation 5.5 Let us consider the bivariate normal. From the theorem above it follows
that if (X ,Y )∼ N(µ,Σ), with

µ =

(
µx

µy

)
and Σ =

(
σ2

x σxy

σxy σ2
y

)
,

then X ∼ N(µx,σ
2
x ) and Y ∼ N(µy,σ

2
y ). Suppose now that X and Y are uncorrelated. Then,

ρ = 0 and we can use the expression above for f (x,y) to conclude that f (x,y) = fx(x) fy(y),
where

fk(k) =
1√

2πσk
exp

{(
k−µk

σk

)2
}

for k = x,y.

Hence, if (X ,Y ) is bivariate normally distributed with the parameters given above, and X and
Y are uncorrelated, then X ∼ N(µx,σ

2
x ) and Y ∼ N(µy,σ

2
y ). This follows simply from the fact

that (X ,Y ) is bivariate normally distributed as stated in the theorem above. Furthermore, X

and Y are independent!

Unlike the implication in the observation above, it is possible for two random variables X and
Y to be distributed jointly in a way such that each one alone is marginally normally distributed,
and they are uncorrelated, but they are not independent. This can happen though only if these
two random variables are not distributed jointly as bivariate normal.

� Example 5.4 [K] Suppose that X has a normal distribution with mean 0 and variance 1. Let
W be a random variable which takes the values either 1 or −1, each with probability 1/2, and
assume W is independent of X . Now, let Y =WX . Then, it can be checked that

(i) X and Y are uncorrelated,

(ii) X and Y have the same normal distribution, and

(iii) X and Y are not independent.
To see that X and Y are uncorrelated, notice that

Cov[X ,Y ] = E[XY ]−E[X ]E[Y ] = E[XY ]

= E[XY |W = 1]P(W = 1)+E[XY |W =−1]P(W =−1)

= E[X2](1/2)+E[−X2](1/2) = 1(1/2)−1(1/2) = 0.
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To see that X and Y have the same normal distribution notice that

FY (x) = P(Y ≤ x) = P(Y ≤ x|W = 1)P(W = 1)+P(Y ≤ x|W =−1)P(W =−1)

= P(X ≤ x)(1/2)+P(−X ≤ x)(1/2)

= P(X ≤ x)(1/2)+P(X ≥−x)(1/2) = P(X ≤ x) = FX(x).

Finally, to see that X and Y are not independent, simply note that |Y |= |X |. �

We have already seen how to obtain the marginal distributions from a multivariate normal
distribution. We have learned that the marginal distributions are also normal. We now ask
whether putting together two normal distributions yields a bivariate normal distribution. The
answer to this question depends crucially on whether the two random variables are independent
or not.

Theorem 5.17 [K] Let X ∼ N(µx,σ
2
x ) and Y ∼ N(µy,σ

2
y ) be two independent random vari-

ables. Then (X ,Y )∼ N(µ,σ), where

µ =

(
µx

µy

)
and Σ =

(
σ2

x 0
0 σ2

y

)
.

However, if two random variables X and Y have both normal distribution, then this does not
imply that the pair (X ,Y ) has a joint normal distribution. A simple example is one in which
X has a normal distribution with expected value 0 and variance 1, and Y = X if |X | > c and
Y = −X if |X | < c, where c is approximately equal to 1.54. In this example the two random
variables X and Y are uncorrelated but not independent.

The following result tells us about the distribution of a linear transformation of a normal
random vector.

Theorem 5.18 [K] Let X ∼ N(µ,Σ), and let A ∈ Rm×Rn and b ∈ Rm. Then,

Y = [A ·X +b]∼ N(A ·µ +b,A ·Σ ·A′).

The following result informs us about the relation between a multivariate normal distribution
and its conditional distributions.

Theorem 5.19 [K] Let X ∼ N(µ,Σ) such that X , µ , and Σ can be partitioned as

X =

(
X1

X2

)
, µ =

(
µ1

µ2

)
and Σ =

(
Σ11 Σ12

Σ21 Σ22

)
.
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Assume that Σ is positive definite. Then, the conditional distribution of X1|X2 = x2 is

N
(
µ1 +Σ12Σ

−1
22 (x2−µ2),Σ11−Σ12Σ

−1
22 Σ21

)
.

Observation 5.6 For the bivariate normal case, we use the expression given in the theorem
above for the joint density of (X ,Y ) to obtain—upon dividing such expression by the marginal
density of X ,

[Y |X = x]∼ N
(

µy +ρ
σy

σx
(x−µx),σ

2
y (1−ρ

2)

)
,

as stated in the result in the theorem above. We conclude by emphasizing that the conditional
expected value of Y given X = x is linear in x:

E[Y |X = x] = µy +ρ
σy

σx
(x−µx).

5.2.4 The t and the F distributions
Definition 5.3 A random variable X is said to have the t distribution if its density function is
given by

f (x) =
Γ
(
(α +1)/2

)
(απ)1/2Γ (α/2)

(
1+

x2

α

)−(α+1)/2

for each x ∈ R.

We write X ∼ t(α) and α is called the degree of freedom of the distribution.

The t distribution is important in statistics because of the following results.

Theorem 5.20 [K] Let X ∼ N(0,1) and Y ∼ χ2(n) be independent random variables. Then

T =
X√
Y/n

∼ t(n).

Theorem 5.21 [K] Let Xi ∼ N(µ,σ2), i = 1, . . . ,n, be independent random variables and let
Xn and S2

n be the random variables defined as

Xn =
n

∑
i=1

Xi
/

n and S2
n =

n

∑
i=1

(Xi−Xn)
2/(n−1).
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Then:
(i) Xn ∼ N(µ,σ2/n);
(ii) Xn and S2

n are independent;
(iii) (n−1)S2

n
/

σ2 ∼ χ2(n−1);
(iv) (Xn−µ)

/
(Sn/
√

n)∼ t(n−1).

Definition 5.4 A random variable X is said to have the F distribution if its density function
is given by

f (x) =
Γ
(
(α +β )/2

)
αα/2β β/2

Γ (α/2)Γ (β/2)
· x(α/2)−1

(β +αx)(α+β )/2
for x > 0,

and f (x) = 0 for x≤ 0. We write X ∼ F(α,β ), and α and β are called the degrees of freedom

of the distribution.

The F distribution is important in statistical work because of the following result.

Theorem 5.22 [K] Let X ∼ χ2(α) and Y ∼ χ2(β ) be independent random variables. Then

Z =
X/α

Y/β
∼ F(α,β ).

5.3 Practice Exercises

Exercise 5.1 Let X be a random variable with moment generating function

ΦX(t) =
(

3
4
+

1
4

et
)6

.

Obtain the density function of X .

Exercise 5.2 Let X be a random variable with density function f (x) = (1/3)(2/3)x, x =

0,1,2, . . . . Find the conditional density of X given that X ≥ 3.

Exercise 5.3 Let X be a random variable with geometric distribution. Show that

P(X > k+ j|X > k) = P(X > j).
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Exercise 5.4 Let X be a random variable with moment generating function

ΦX(t) = e5(et−1).

Compute P(X ≤ 4).

Exercise 5.5 Let X ∼P(1). Compute, if it exists, the expected value E[X!].

Exercise 5.6 Prove Theorem 5.6.

Exercise 5.7 Let X1, X2, and X3 be independent and identically distributed random vari-
ables, each with density function f (x) = e−x for x > 0. Find the density function of
Y = min{X1,X2,X3}.

Exercise 5.8 Let X ∼U [0,1]. Find the density function of Y =− lnX .

Exercise 5.9 Prove Theorem 5.13.

Exercise 5.10 Let (X1,X2,X3) have a multivariate normal distribution with mean vector 0
and variance-covariance matrix

Σ =

1 0 0
0 2 1
0 1 2

 .

Find P(X1 > X2 +X3 +2).

Exercise 5.11 Let X ∼ N(0,1) and let n be a positive natural number. Using the result

∫ +∞

0
s2n+1e−s2/2ds = 2nn!,

show that

E
[
|X |2n+1

]
= 2nn!

√
2
π
.
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Exercise 5.12 Let X ,Y ∼ N(0,σ2) be two independent random variables and let U =

+
√

X2 + y2 and W = X/Y . Compute the marginal densities of U and W . Are they inde-
pendent random variables?

Exercise 5.13 Let Xi ∼ N(0,1), i = 1, . . . ,4, be independent random variables. Show that
Y = X1X2 +X3X4 has the density function f (y) = (1/2)exp{−|y|} for each y ∈ R.

Exercise 5.14 Let X and Y be two random variables distributed standard normally. Denote
by f and F the density function and the distribution function of X , respectively. Likewise,
denote by g and G the density function and the distribution function of Y . Let (X ,Y ) have
joint density function

h(x,y) = f (x)g(y)
[
1+α(2F(x)−1)(2G(y)−1)

]
,

where α is a constant such that |α| ≤ 1. Show that X +Y is not normally distributed except
in the trivial case α = 0, i.e., when X and Y are independent.

Exercise 5.15 Give a closed expression for E[X r], r = 1,2, . . . , where X ∼ F(α,β ).

Exercise 5.16 Let X ∼ χ2(n) and Y ∼ χ2(m) be independent random variables. Find the
density of Z = X

/
(X +Y ).

Exercise 5.17 Let (X ,Y ) ∼ N(µ,Σ). Determine the distribution of the random vector
(X +Y,X−Y ). Show that X +Y and X−Y are independent if Var[X ] = Var[Y ].

Exercise 5.18 Let X ∼ N(2,4). Compute P(1 < X < 6) using only the function γ(y) =

1
/√

2π
∫ y

0 e−s2/2ds.

Exercise 5.19 Let (X ,Y ) have joint density function:

f (x,y) =
1

6π
√

7
exp
{
−8

7

(
x2

16
− 31x

32
+

xy
8
+

y2

9
− 4y

3
+

71
16

)}
for x,y ∈ R.

(a) Find the means and variances of X and Y . Find Cov[X ,Y ] too.
(b) Find the conditional density of Y |X = x, E[Y |X = x], and Var[Y |X = x].
(c) Find P(4≤ Y ≤ 6|X = 4).
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Exercise 5.20 Let X ∼ t(α). Show that X2 ∼ F(1,α). Let fα(x) denote the density function
of X . Show that

lim
α→∞

fα(x) =
1√
2π

e−x2/2

for each x ∈ R.
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6. Convergence of Distributions [K]

In this chapter we study convergence properties of sequences of random variables.

6.1 Convergence in Distribution [K]
Convergence in distribution yields the weakest notion of convergence.

Definition 6.1 Given some probability space, let {Xn}∞

n=1 be a sequence of random variables
and let X be a random variable. Let {Fn}∞

n=1 and F be the corresponding sequence of
distribution functions and the distribution function. We say that Xn converges in distribution

to X or, equivalently, Fn converges in law (or weakly) to F if

lim
n→∞

Fn(x) = F(x)

for each point x at which F is continuous. We write Xn
L−→ X and Fn

w−→ F .

From here onwards, let us use “i.i.d.” as abbreviation for “independent and identically
distributed.”

� Example 6.1 [K] Let X1,X2, . . . ,Xn i.i.d. random variables with (common) density function

f (x) =

1/θ if 0≤ x < θ ;

0 otherwise,

where 0 < θ < ∞. Let Yn = max{X1,X2, . . . ,Xn} for n = 1,2, . . . . Then, the distribution function
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of Yn is given by

Gn(y) = P(Yn ≤ y) = P(Y1 ≤ y, . . . ,Yn ≤ y) = [F(y)]n

=


0 if y < 0;

(y/θ)n if 0≤ y < θ ;

1 if y≥ θ .

Then, given y≥ 0,

lim
n→∞

Gn(y) = G(y) =

0 if y < θ ;

1 if y≥ θ .

Therefore, Yn
L−→Y , where Y is the random variable associated to a random experiment that yields

θ with certainty. �

The following example shows that convergence in distribution does not imply convergence
of the moments of the distribution. This illustrates that convergence in distribution gives us a
weak form of convergence.

� Example 6.2 [K] Let {Fn}∞

n=1 be a sequence of distribution functions defined by

Fn(x) =


0 if x < 0;

1−1/n if 0≤ x < n;

1 if x≥ n.

Note that, for each n = 1,2, . . . , Fn is the distribution function of a discrete random variable Xn,
supported on the set {0,n}, with density function

P(Xn = 0) = 1− 1
n
, P(Xn = n) =

1
n
.

We have, for each given x≥ 0,

lim
n→∞

Fn(x) =

0 if x < 0;

1 if x≥ 0.

Note that F is is the distribution function of a random variable X degenerate at x = 0 so that,



6.2 Convergence in Probability and Almost Surely [K] 111

clearly, for r = 1,2, . . . , one obtains E[X r] = 0. However, we have

E[X r
n ] = (0)r

(
1− 1

n

)
+(n)r

(
1
n

)
= nr−1,

so that, evidently, limn→∞ E[X r] 6= E[X ]. �

6.2 Convergence in Probability and Almost Surely [K]
This section formalizes a pair of notions of converge in which a sequence of random variables
approaches another random variable. We will see subtle differences between the two ideas
of convergence presented in this section. First, convergence in probability is not related with
convergence of random variables in the sense typically understood in real analysis. In partic-
ular, convergence in probability tells us something about the convergence of a sequence of
probabilities.

Definition 6.2 Given some probability space, let {Xn}∞

n=1 be a sequence of random variables
and let X be a random variable. We say that Xn converges in probability to X if for each
ε > 0, we have

lim
n→∞

P
(
|Xn−X |> ε

)
= 0.

We write Xn
P−→ X .

Note that the condition in the definition above can be equivalently rewritten as

lim
n→∞

P
(
|Xn−X | ≤ ε

)
= 1.

� Example 6.3 [K] Let {Xn}∞

n=1 be a sequence of random variables with (discrete) density
function

P(Xn = 0) = 1− 1
n
, P(Xn = 1) =

1
n
.

Then,

P
(
|Xn|> ε

)
=

1/n if 0 < ε < 1;

0 if ε ≥ 1,
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so that limn→∞ P
(
|Xn|> ε

)
= 0 and, therefore, Xn

P−→ 0. �

� Example 6.4 [KK] Let {Xn}∞

n=1 be a sequence of i.i.d. random variables with (common)
density function

f (x) =

e−(x−θ) if x > θ ;

0 if x≤ θ ,

where θ ∈R, and let Yn = min{X1, . . . ,Xn} for each n = 1,2, . . . . We can now show that Yn
P−→ θ .

To do this, note that, for any given real number y > θ , we have

Fn(y) = P(min{X1, . . . ,Xn} ≤ y) = 1−P(min{X1, . . . ,Xn}> y)

= 1−P(X1 > y, · · · ,Xn > y) = 1−
(∫

∞

y
e−(x−θ)dx

)n

= 1− e−n(y−θ).

Therefore, for a given ε > 0, we obtain

P(|Yn−θ | ≤ ε) = P(θ − ε ≤ Yn ≤ θ + ε)

= Fn(θ + ε)−Fn(θ − ε)

= 1− e−n(θ+ε−θ),

where we have taken into account that Fn(θ−ε) = 0 since θ−ε < θ . Finally, we trivially obtain
1− e−nε → 1 as n→ ∞, as required. �

Convergence in probability is preserved through continuous transformations and under some
common algebraic operations.

Theorem 6.1 [K] Suppose Xn
P−→ X and let g : R→ R be a continuous function. Then

g(Xn)
P−→ g(X).

Theorem 6.2 [K] Suppose Xn
P−→ X and Yn

P−→ Y . Then:
(i) αXn +βYn

P−→ αX +βY for each α,β ∈ R;
(ii) Xn ·Yn

P−→ X ·Y .
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Theorem 6.3 [K] Suppose Xn
P−→ X , then Xn

L−→ X .

There exists another notion of converge that strengthens further the idea of converge in
probability. Unlike convergence is probability, this notion does have a flavor similar to the
pointwise converge of a sequence of function. Almost surely convergence requires that converge
occurs in a set that (possibly) only excludes a set that has probability zero of occurrence. This
message of something happing except in a set that has probability zero of occurrence is more
formally developed in chapter chapter 11.

Definition 6.3 Given some probability space, let {Xn}∞

n=1 be a sequence of random variables
and let X be a random variable. We say that Xn converges almost surely to X if for each ε > 0,
we have

P
(

lim
n→∞
|Xn−X |< ε

)
= 1.

� Example 6.5 [K] Consider the sample set Ω = [0,1] and a probability space (Ω ,BΩ ,P) where
P assigns equal probability of occurrence to each ω ∈Ω . Then, take a random variable X defined
as X(ω) = ω so that X that distributes uniformly on the support [0,1]. In particular, X has density
f (x) = 1 for each x ∈ [0,1] and P(X ∈ [a,b]) = b−a for each interval [a,b]⊆ [0,1] (with b > a).
Also, consider a sequence of random variables on (Ω ,BΩ ,P) defined as Xn(ω) = ω +ωn. Then,
notice limn→∞ Xn(ω) = X(ω) that for each ω ∈ [0,1) whereas limn→∞ Xn(1) = 2 6= X(1) = 1.
Since P(1) = 0, we have that Xn converges to X for each ω ∈ Ω , except for a set {1} of zero
probability. Therefore Xn converges almost surely to X . �

Observation 6.1 The differences between the ideas of convergence in probability and almost
surely convergence are subtle but fundamental. To appreciate such differences between the
two notions, recall that a random variable X is a (measurable) function on a certain sample set
Ω . Therefore, a sequence of random variables Xn converges almost surely to random variable
X if the functions Xn(ω) converge to the function X(ω) for each ω ∈Ω except (possibly) for
some ω ∈ A such that P(A) = 0. On the other hand Xn converges almost surely to random
variable X is the sequence of probabilities {P

(
|Xn−X | ≥ ε

)
}∞

n=1 converges to zero. Note,
that any of such probabilities P

(
|Xn−X | ≥ ε

)
is a number which does not depend on ω .

6.3 Laws of Large Numbers [K]
The weak law of large numbers informs us about the converge in probability of the mean of a
large number of random variables.
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Theorem 6.4 — WLLN. [K] Let {Xn}∞

n=1 be a sequence of i.i.d. random variables with
E[Xn] = µ and Var[Xn] = σ2 < ∞, and let Xn = ∑

n
i=1 Xi

/
n. Then, Xn

P−→ µ .

Proof of Theorem 6.4. Using the inequality of Chebychev-Bienaymé, for ε > 0, we have

0≤ P
(∣∣Xn−µ

∣∣≥ ε
)
≤ 1

ε2 Var
[
Xn
]
=

σ2

nε2 .

Then, the result follows since σ2/nε2→ 0 as n→ ∞.

There is also a well known result, called the Strong Law of Large Numbers, where the
requirements of the theorem above allows us to achieve almost surely convergence of the sample
mean to theoretical mean.

Theorem 6.5 — SLLN. [K] Let {Xn}∞

n=1 be a sequence of i.i.d. random variables with
E[Xn] = µ and Var[Xn] = σ2 < ∞, and let Xn = ∑

n
i=1 Xi

/
n. Then, the sample mean Xn

converges almost surely to theoretical mean µ . That is, for each ε > 0, we have

P
(

lim
n→∞
|Xn−µ|< ε

)
= 1.

� Example 6.6 [K] Consider a sequence {Xn}∞

n=1 of i.i.d. random variables with E[Xn] = µ

and Var[Xn] = σ2 < ∞. Let

Xn =
n

∑
i=1

Xi
/

n and S2
n =

n

∑
i=1

(Xi−Xn)
2/(n−1).

The WLLN states that Xn
P−→ µ . Let us now ask about convergence results concerning the

sample variance S2
n. Assume that E

[
X4

i
]
< ∞ for each i = 1,2, . . . , so that Var[S2

n]< ∞ for each
n = 1,2, . . . . We obtain

S2
n =

1
n−1

n

∑
i=1

(Xi−Xn)
2 =

n
n−1

n

∑
i=1

(Xi−Xn)
2 =

n
n−1

(
1
n

n

∑
i=1

X2
i −X2

n

)
.

Using the WLLN, we obtain that Xn
P−→ µ . Also, by taking Yi = X2

i , the WLLN tells us that

Y n =
n

∑
i=1

X2
i /n P−→ E[Yk] = E[X2

k ]
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for any given k = 1,2, . . . . Then, combining the results in the Theorems above, we obtain

S2
n =

n
n−1

·

(
1
n

n

∑
i=1

X2
i −X2

n

)
P−→ 1 ·

(
E[X2

k ]−µ
2)= σ

2.

�

6.4 The Central Limit Theorem [K]
The central limit theorem is a key implication in probability and statistics that convey the striking
message that averages of large samples of arbitrary distributions end up behaving as normal.
This key implication thus gives us appealing foundations to consider normal distributions as
governing random phenomena that concerns large populations. At a practical level, the central
limit theorem can be used to approximate the computation of probabilities when we consider
the realizations of sequences of random variables. The central limit theorem has a number of
(slightly) different formulations. In practices, all that it requires is finite variances of the random
variables in the sequence.

We begin by introducing the notion of random sample, which is a key tool in estimation.

Definition 6.4 A random sample of size n from a distribution with distribution function F is
a set {X1,X2, . . . ,Xn} of i.i.d. random variables whose (common) distribution function is F .

Using Theorem 5.11, we can verify that if X1,X2, . . . ,Xn are i.i.d. normal random variables
with mean µ and variance σ2, then the random variable

√
n(Xn−µ)

σ

has the standard normal distribution.
Now, suppose that X1,X2, . . . ,Xn are the observations (not necessarily independent!) of a

random sample of size n obtained from any distribution with finite variance σ2 > 0 and, therefore,
finite mean µ . The important result stated below says that the random variable

√
n(Xn−µ)

/
σ

converges in distribution to a random variable distributed according to the standard normal. It
will be then possible to use this approximation to the normal distribution to compute approximate
probabilities concerning Xn. In the statistical problem where µ is unknown, we shall use this
approximation of Xn to estimate µ .
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Theorem 6.6 — Lindeberg-Lévy Central Limit Theorem. [K] Let {Xn}∞

n=1 be a sequence of
random variables with E[Xn] = µ and 0 < Var[Xn] = σ2 < ∞, and let Xn = ∑

n
i=1 Xi

/
n. Then,

the sequence of random variables {Yn}∞

n=1 defined by

Yn =
(∑n

i=1 Xi−nµ)√
nσ

=

√
n
(
Xn−µ

)
σ

satisfies Yn
L−→ Y ∼ N(0,1).

� Example 6.7 [K] Consider a set {X1, . . . ,X75} of random variables with Xi ∼U [0,1] for each
i = 1, . . . ,75. We are interested in computing P(0.45 < Xn < 0.55), where Xn = ∑

75
i=1 Xi

/
75.

Such computation maybe complicated to obtain directly. However, using the theorem above
together with the fact that µ = 1/2 and σ2 = 1/12, one obtains

P(0.45 < Xn < 0.55) = P

(√
75(0.45−0.5)

1/
√

12
<

√
n(Xn−µ)

σ
<

√
75(0.55−0.5)

1/
√

12

)
= P(−1.5 < 30(Xn−0.5)< 1.5)≈ 0.866,

since 30(Xn−0.5) is approximately distributed according to the standard normal distribution. �

6.5 Practice Exercises

Exercise 6.1 Let {Xn}∞

n=1 be a sequence of random variables with Xi ∼ b(n, p), for each
i = 1, . . . ,n (0 < p < 1). Obtain the probability distribution of a random variable X such that
Xn

L−→ X .

Exercise 6.2 Let X be the random variable associated to the number of successes throughout
n independent repetitions of a random experiment with probability p of success. Show that X

satisfies the following form of the Weak Law of Large Numbers:

lim
n→∞

P
(∣∣∣∣Xn − p

∣∣∣∣< ε

)
= 1 for each given ε > 0.
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Exercise 6.3 Let {Xn}∞

n=1 be a sequence of random variables with mean µ < ∞ and variance
a
/

np, where a ∈ R and p > 0. Show that Xn
P−→ µ .

Exercise 6.4 Let X be the mean of a random sample of size 128 from a Gamma distribution
with α = 2 and β = 4. Approximate P(7 < X < 9).

Exercise 6.5 Let f (x) = 1
/

x2 for 1 < x < ∞ and f (x) = 0 for x ≤ 1. Consider a random
sample of size 72 from the probability distribution of a random variable X which has f as
density function. Compute approximately the probability that more than 50 observations of
the random variable are less than 3.

Exercise 6.6 Let X1 and X2 be the means of two independent random samples of size n from
a population with variance σ2. Find the value of n such that P

(∣∣X1−X2
∣∣< σ/5

)
≈ 0.99 and

justify your answer.

Exercise 6.7 Let Xn
L−→ X and let Yn be a sequence of random variables with the property that,

for any finite number c,

lim
n→∞

P(Yn > c) = 1.

Show that, for any finite number c, we have

lim
n→∞

P(Xn +Yn > c) = 1.





7. Parametric Point Estimation [K]

Sometimes we are interested in working with a random variable X but we do not know its
distribution function F . The distribution function F describes the behavior of a phenomenon
or population (whose individuals are, accordingly, the realizations of the random variable
X). Basically, this not knowing a distribution function can take two forms. Either we ignore
completely the form of F(x) or we do know the functional form of F but ignore a set of
parameters upon which F depends. The problem of point estimation is of the second type.
For instance, we may know that a certain population has a normal distribution N(µ,σ2) but
ignore one of the parameters, say σ2. Then, after drawing a random sample {X1,X2, . . . ,Xn}
from the distribution N(µ,σ2), the problem of point estimation consists of choosing a number
T (X1,X2, . . . ,Xn) that depends only on the sample and best estimates the unknown parameter σ2.
If both parameters µ and σ2 are unknown, then we need to seek for a pair

T (X1,X2, . . . ,Xn) =
(
T1(X1,X2, . . . ,Xn),T2(X1,X2, . . . ,Xn)

)
∈ R2

such that T1 estimates µ and T2 estimates σ2.

Let us be specific about the estimation problem. Consider that the random variable X has a
distribution function Fθ and a density function fθ which depend on some unknown parameter
θ = (θ1, . . . ,θk) ∈ Rk. Let Θ denote the subset Θ ⊆ Rk of possible values for the parameter and
let X denote the set of possible random samples of size n. Thus, we are indeed considering
a family {Fθ : θ ∈Θ} of distribution functions parameterized by θ . A point estimator (or

statistic) for θ is any function T : X →Θ .

Next, we introduce certain desirable properties of estimators. The criteria that we discuss are
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consistency, sufficiency, unbiasedness, and efficiency.

7.1 Consistent Estimation [K]
Consider a random sample and suppose that we want to choose an estimator T of an unknown
parameter θ . Then, the consistency criterion requires that it becomes very likely that the estimator
approaches the true value of the parameter as the size of the random sample increases.

Definition 7.1 Let {X1,X2, . . . ,Xn} be a random sample from Fθ . A point estimator
T (X1,X2, . . . ,Xn) is consistent for θ ∈Θ if T (X1,X2, . . . ,Xn)

P−→ θ .

Intuitively, if a estimator T is consistent for a parameter θ , then we may interpret it as “T

being close to θ on average” as n increases.

� Example 7.1 [K] Let {X1,X2, . . . ,Xn} be a random sample from a binomial distribution
b(1, p). Then, E[Xk] = p for each k = 1,2, . . . ,n. From the WLLN, we know that

Xn = T (X1,X2, . . . ,Xn) =
n

∑
i=1

Xi
/

n P−→ p

so that the sample mean is consistent to estimate p. Now it can be easily checked that

∑
n
i=1 Xi +1
n+2

=
∑

n
i=1 Xi

n
· n

n+2
+

1
n+2

P−→ p.

Thus, a consistent estimator for a certain parameter need not be unique. Finally, as shown earlier,

S2
n =

n
n−1

(
1
n

n

∑
i=1

X2
i −X2

n

)
P−→ Var[Xk]

for each k = 1,2, . . . ,n, so that the sample variance is consistent to estimate the variance of
the distribution. It can be easily checked that S2

n is not the unique consistent estimator for the
variance of the population. �

7.2 Sufficient Estimation [K]
The desiderata associated to the sufficiency criterion can be summarized as requiring that the
only information obtained about the unknown parameter is that provided by the sample itself.
Thus, we want to rule out possible relations between the proposed estimator and the parameter.
Under this criterion, we seek for estimators that make “full use” of the information contained in
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the sample.

Definition 7.2 Let {X1,X2, . . . ,Xn} be a random sample from Fθ . A point estimator
T (X1,X2, . . . ,Xn) is sufficient for θ ∈Θ if the conditional density of (X1,X2, . . . ,Xn), given
T (X1,X2, . . . ,Xn) = t, does not depend on θ (except perhaps for a set A of zero measure,
Pθ [X ∈ A] = 0).

� Example 7.2 [K] Let {X1,X2, . . . ,Xn} be a random sample from a binomial distribution
b(1, p) and consider the estimator T (X1,X2, . . . ,Xn) = ∑

n
i=1 Xi. Then, by considering t = ∑

n
i=1 xi,

we obtain

fθ (x1, . . . ,xn|T = t) =
P
(

X1 = x1, . . . ,Xn = xn,∑
n
i=1 Xi = ∑

n
i=1 xi

)
P
(

∑
n
i=1 Xi = t

)
=

p∑
n
i=1 xi(1− p)n−∑

n
i=1 xi(n

t

)
pt(1− p)n−t

=
1(n
t

) ,
which does not depend on p. So, ∑

n
i=1 Xi is sufficient to estimate p. �

Often times, it turns out to be difficult to use the definition of sufficiency to check whether a
estimator is sufficient or not. The following result is then helpful in many applications.

Theorem 7.1 — Fisher-Neyman Factorization Criterion. [K] Let {X1,X2, . . . ,Xn} be a random
sample from Fθ and let fθ denote the joint density function of (X1,X2, . . . ,Xn). Then, a
estimator T (X1,X2, . . . ,Xn) is sufficient for a parameter θ if and only if fθ (x1, . . . ,xn) can be
factorized as follows:

fθ (x1, . . . ,xn) = h(x1, . . . ,xn) ·gθ (T (x1, . . . ,xn)),

where h is a nonnegative function of x1, . . . ,xn only and does not depend on θ , and gθ is a
nonnegative nonconstant function of θ and T (x1, . . . ,xn) only.

� Example 7.3 [K] As in the previous example, let {X1,X2, . . . ,Xn} be a random sample from a
binomial distribution b(1, p) and consider the estimator T (X1,X2, . . . ,Xn) = ∑

n
i=1 Xi. Then, we

can write

fp(x1, . . . ,xn) = p∑
n
i=1 xi(1− p)n−∑

n
i=1 xi = 1 · (1− p)n

(
p

1− p

)
∑

n
i=1 xi

.
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Therefore, by taking h(x1, . . . ,xn) = 1 and gp(∑
n
i=1 xi) = (1− p)n [p/(1− p)

]
∑

n
i=1 xi , we obtain

that ∑
n
i=1 Xi is sufficient to estimate p. �

� Example 7.4 [K] Let {X1,X2, . . . ,Xn} be a random sample from a normal distribution
N(µ,σ2) and suppose that we are interested in estimating both µ and σ2. Then, we can
write

f(µ,σ2)(x1, . . . ,xn) =
1(

σ
√

2π
)n exp

{
−∑

n
i=1(xi−µ)2

2σ2

}
=

1(
σ
√

2π
)n exp

{
µ ∑

n
i=1 xi

σ2 − ∑
n
i=1 x2

i
2σ2 −

nµ2

2σ2

}
.

Then, using the factorization theorem above, it follows that

T (X1,X2, . . . ,Xn) =
( n

∑
i=1

Xi,
n

∑
i=1

X2
i

)
is a sufficient estimator for (µ,σ2). �

7.3 Unbiased Estimation [K]
Another desirable criterion for choosing point estimators is that the expected value of the
estimator gives us the true parameter.

Definition 7.3 Let {X1,X2, . . . ,Xn} be a random sample from Fθ . A point estimator
T (X1,X2, . . . ,Xn) is unbiased for θ ∈Θ if

Eθ

[
T (X1,X2, . . . ,Xn)

]
= θ .

At this point, we can derive a useful result about the moment of second order of any
distribution. Let X be a random variable such that E[X ] = µ and Var[X ] = σ2. Using the general
definition of expected value given in chapter 3, we obtain

E[X2] =
∫

Ω

X2dP =
∫

Ω

[
(X−µ)2−µ

2 +2µX
]
dP = σ

2 +µ
2.

With this result in hand, we can now show that the sample mean and the sample variance
are unbiased estimators for the population mean and the population variance, respectively.
Consider a random variable X with E[X ] = µ , Var[X ] = σ2, and distribution function F(µ,σ2).
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Let {X1,X2, . . . ,Xn} be a random sample from F(µ,σ2). First, we easily obtain

E
[
Xn
]
=

1
n

n

∑
i=1

E[Xi] = µ.

Secondly, we have

S2
n =

1
n−1

n

∑
i=1

(
Xi−Xn

)2
=

1
n−1

[
n

∑
i=1

X2
i −nX2

n

]
,

so that

E[S2
n] =

1
n−1

[
n

∑
i=1

E[X2
i ]−nE[X2

n]

]
.

Then, since E[Z2] =
(
E[Z]

)2
+Var[Z] for any random variable Z, we obtain

E[S2
n] =

1
n−1

[
nµ

2 +nσ
2−n

[(
E[Xn]

)2
+Var[Xn]

]]
=

1
n−1

[
nµ

2 +nσ
2−n

[
µ

2 +
σ2

n

]]
= σ

2.

Hence, the sample variance is unbiased to estimate the population variance. On the other hand,
notice that the estimator ∑

n
i=1
(
Xi−Xn

)2/n is biased to estimate σ2.

7.4 Maximum Likelihood Estimation [K]

In the previous sections we have considered several desirable properties that can be used to search
for appropriate estimators. Now, we introduce another method which has a more constructive
approach. The basic tool of this method is the likelihood function of a random sample, which
is nothing but its joint density function. To follow the usual notation, given a random sample
{X1,X2, . . . ,Xn} from a distribution Fθ , we rename its joint density function as

L(x1, . . . ,xn;θ)≡ fθ (x1, . . . ,xn) =
n

∏
i=1

fθ (xi).
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Furthermore, for tractability reasons, in many applications it is convenient to work with the log
transformation of the likelihood function:

Π(θ) = lnL(x1, . . . ,xn;θ) =
n

∑
i=1

ln fθ (xi).

At this point, we need to make some assumptions on our working benchmark.

Assumption 7.1 — Regularity Conditions. 1. For θ ,θ ′ ∈Θ , we have

θ 6= θ
′ ⇒ fθ 6= fθ ′;

2. the support of fθ does not depend on θ for each θ ∈Θ .

Now, suppose that the actual value of the unknown parameter θ is θ0. The following result gives
us theoretical reasons for being interested in obtaining the maximum of the function Π(θ). It
tells us that the maximum of Π(θ) asymptotically separates the true model at θ0 from any other
model θ 6= θ0.

Theorem 7.2 [K] Given Assumption 7.1, if θ0 is the true value of the unknown parameter θ ,
then

lim
n→∞

Pθ0

[
L(X1, . . . ,Xn;θ0)≥ L(X1, . . . ,Xn;θ)

]
= 1 for each θ ∈Θ .

Proof of Theorem 7.2. By taking logs, the inequality L(X1, . . . ,Xn;θ0)≥ L(X1, . . . ,Xn;θ) can
be rewritten as

n

∑
i=1

ln fθ (Xi)≤
n

∑
i=1

ln fθ0(Xi) ⇔ Yn =
1
n

n

∑
i=1

ln
(

fθ (Xi)

fθ0(Xi)

)
≤ 0.

Then, from the WLLN it follows that

1
n

n

∑
i=1

ln
(

fθ (Xi)

fθ0(Xi)

)
P−→ Eθ0

[
ln
(

fθ (X1)

fθ0(X1)

)]
.

Now, using the fact that ln(s) is a strictly concave function in s, we can use Jensen’s inequality
to obtain

Eθ0

[
ln
(

fθ (X1)

fθ0(X1)

)]
< ln

(
Eθ0

[
fθ (X1)

fθ0(X1)

])
.
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However, notice that

Eθ0

[
fθ (X1)

fθ0(X1)

]
=
∫ +∞

−∞

fθ (x1)

fθ0(x1)
dFθ0(x1) =

∫ +∞

−∞

fθ (x1)

fθ0(x1)
fθ0(x1)dx1 = 1.

Since ln(1) = 0, we have obtained that

Yn =
1
n

n

∑
i=1

ln
(

fθ (Xi)

fθ0(Xi)

)
P−→ Z < 0.

Therefore, for any ε > 0, from the definition of convergence in probability, we know that

lim
n→∞

Pθ0

[
Z− ε ≤ Yn ≤ Z + ε

]
= 1.

Since Z < 0, by choosing ε > 0 small enough so as to have Z+ε = 0, the equality above implies
(considering only one of the inequalities within the probability operator)

lim
n→∞

Pθ0

[
Yn ≤ 0

]
= 1,

as desired.

In short, the likelihood function is asymptotically maximized at the true value θ0.

Definition 7.4 Let {X1,X2, . . . ,Xn} be random sample from Fθ and let (x1,x2, . . . ,xn) be a
realization of that sample. The value T (x1,x2, . . . ,xn) = θ̂ is a maximum likelihood estimate

for θ if

Π(θ̂)≥Π(θ ′) for each θ
′ ∈Θ .

� Example 7.5 [K] Let {X1,X2, . . . ,Xn} be a random sample from a binomial distribution
b(1, p). Then,

fp(x1, . . . ,xn) = p∑
n
i=1 xi(1− p)n−∑

n
i=1 xi

and, consequently,

Π(p) =

(
n

∑
i=1

xi

)
ln p+

(
n−

n

∑
i=1

xi

)
ln(1− p).
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Then,

Π
′(p) = 0 ⇒ (1− p)

n

∑
i=1

xi = p

(
n−

n

∑
i=1

xi

)
⇒ p̂ =

n

∑
i=1

xi
/

n.

Thus, the sample mean is the maximum likelihood estimator of p. �

� Example 7.6 [K] Let {X1,X2, . . . ,Xn} be a random sample from a uniform distribution U [0,θ ].
Since the parameter θ is in the support of the distribution, differentiation is not helpful here.
Notice instead that the corresponding likelihood function can be written as

L(x1, . . . ,xn;θ) =

(
1

θ n

)
φ(max{xi : i = 1, . . . ,n} ,θ),

where φ(a,b) = 1 if a ≤ b and φ(a,b) = 0 if a > b. So, L(x1, . . . ,xn;θ) is decreasing in θ for
θ ≥max{xi : i = 1, . . . ,n} and equals zero for θ < max{xi : i = 1, . . . ,n}. Furthermore, notice
that, despite being decreasing in θ for θ ≥ max{xi : i = 1, . . . ,n}, its maximum is attained at
θ̂ = max{xi : i = 1, . . . ,n} since L(x1, . . . ,xn; θ̂) = 0 for θ̂ < max{xi : i = 1, . . . ,n}. �

� Example 7.7 [K] Let {X1,X2, . . . ,Xn} be a random sample from a normal distribution
N(0,σ2). The likelihood function is obtained as

L(x1, . . . ,xn;σ
2) =

1

(2πσ2)
n/2 exp

{
−∑

n
i=1 x2

i
2σ2

}
so that

Π(σ2) =−n
2

ln2π− n
2

lnσ
2− ∑

n
i=1 x2

i
2σ2 .

Therefore,

Π
′(σ2) =− n

2σ2 +
∑

n
i=1 x2

i
2σ4 = 0 ⇒ σ̂

2 =
∑

n
i=1 x2

i
n

.

�
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7.5 Rao-Cramér Bound and Efficient Estimation [K]
This section presents an important inequality which establishes a lower bound for the variance
of any unbiased estimator. First, we need to restrict further our benchmark by imposing a few
requirements additional to those given by Assumption 7.1.

Assumption 7.2 — Additional Regularity Conditions. 1. The point θ0 is an interior point
in Θ ;

2. fθ is twice differentiable with respect to θ ;
3. the integral

∫
fθ (xi)dxi can be differentiated twice (under the integral sign) with respect

to θ .

Theorem 7.3 — Rao-Cramér Lower Bound. [K] Under Assumptions 7.1 and 7.2, if
{X1,X2, . . . ,Xn} is a random sample from Fθ and T (X1,X2, . . . ,Xn) is a point estimator for θ

with mean E
[
T (X1,X2, . . . ,Xn)

]
= τ(θ), then

Var
[
T (X1,X2, . . . ,Xn)

]
≥
[
τ ′(θ)

]2
nI(θ)

,

where

nI(θ) = Eθ

[
∂ ln fθ (x1, . . . ,xn)

∂θ

]2

is a quantity called Fisher information of the random sample.

Note that if T (X1,X2, . . . ,Xn) is an unbiased estimator of θ , then the Rao-Cramér inequality
becomes

Var
[
T (X1,X2, . . . ,Xn)

]
≥ 1

nI(θ)

The Rao-Cramér lower bound gives us another criterion for choosing appropriate estimators.

Definition 7.5 Let {X1,X2, . . . ,Xn} be a random sample from Fθ . A point estimator
T (X1,X2, . . . ,Xn) is efficient for θ ∈Θ if its variance attains the Rao-Cramér lower bound.
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7.6 Practice Exercises

Exercise 7.1 Let {X1,X2, . . . ,Xn} be a random sample from Fθ and let T (X1,X2, . . . ,Xn) be
a point estimator of θ . Show that if T is unbiased for θ and limn→∞ Var[T ] = 0, then T is
consistent for θ .

Exercise 7.2 Let {X1,X2, . . . ,Xn} be a random sample from a distribution with density
function

fθ (x) = θxθ−1, for 0 < x < 1,

where θ > 0. Argue whether the product X1X2 · · ·Xn is a sufficient estimator for θ or not.

Exercise 7.3 Let {X1,X2, . . . ,Xn} be a random sample from a Poisson distribution with mean
r. Propose a maximum likelihood estimator for r.

Exercise 7.4 Let X and Y be two random variables such that E[Y ] = µ and Var[Y ] = σ2. Let
T (x) = E[Y |X = x]. Show that E[T (X)] = µ and Var[T (X)]≤ σ2.

Exercise 7.5 What is a sufficient estimator for θ if the random sample is drawn from a beta
distribution with α = β = θ > 0?

Exercise 7.6 Let {X1,X2, . . . ,Xn} be a random sample from a distribution with density
function

fθ (x) =
e−(x−θ)[

1+ e−(x−θ)
]2 , for −∞ < x <+∞,

where θ ∈ R. Show that there exists a unique maximum likelihood estimator for θ .

Exercise 7.7 Let X1 and X2 constitute a random sample from a Poisson distribution with
mean r. Show that X1 +X2 is a sufficient estimator for r and that X1 +2X2 is not a sufficient
estimator for r.



8. Hypothesis Testing

8.1 Neyman-Pearson Theory [K]

In the previous chapter we analyzed the problem of using sample information to estimate
unknown parameters of a probability distribution. In this chapter we follow a slightly different
approach. We use sample information to test hypotheses about the unknown parameters. The
treatment of this problem is as follows. We have a distribution function Fθ that depends on some
unknown parameter (or vector of parameters) θ and our objective is to use a random sample
{X1,X2, . . . ,Xn} from this distribution to test hypotheses about the value of θ . As in the previous
chapter, we assume that the functional form of Fθ , except for the parameter θ itself, is known.
Suppose that we think, from preliminary information, that θ ∈Θ0 where Θ0 ⊂Θ . This assertion
is usually known as the null hypothesis, H0 : θ ∈Θ0, while the statement H1 : θ ∈Θ1 =Θ \Θ0

is known as the alternative hypothesis. We write

H0 : θ ∈Θ0;

H1 : θ ∈Θ1.

There are two types of hypotheses: if Θ0 (Θ1) contains only one point, the hypothesis is
simple, otherwise the hypothesis is composite. Note that if a hypothesis is simple, then the
distribution function Fθ becomes completely specified under that hypothesis. For example,



130 Chapter 8. Hypothesis Testing

consider a random variable X ∼ N(µ,σ2). Then, we might propose the test

H0 : µ ≤−1, σ
2 > 2;

H1 : µ >−1, σ
2 ≤ 2,

where both the null and the alternative hypotheses are composite. Here, under any of those
hypotheses, the distribution of X remains not fully specified.

The procedure that we follow to test hypotheses is as follows. Given the sample space
X , we search for a decision rule that allows us, for each realization (x1, . . . ,xn) of the random
sample, to either “accept” (roughly speaking) or reject the null hypothesis. More specifically,
for Θ ⊆ Rk, we consider a statistic T : X →Θ and partition the sample space of that statistic
into two sets C ⊂ Rk and Cc = Rk \C. Now, if T (x1, . . . ,xn) ∈ C, then we reject H0 while if
T (x1, . . . ,xn) ∈Cc, then we fail to reject H0. When T (x1, . . . ,xn) ∈Cc and, consequently, we fail
to reject H0, then we shall write from here onwards “accept” H0. However, we emphasize that
this does not necessarily mean that H0 can be granted our stamp of approval. It rather means that
the sample does not provide us with sufficient evidence against H0.

Alternatively, we can partition the space of the random sample itself (instead of the set of
possible values taken by the statistic) into A⊂ Rn and Ac = Rn \A. Then, we can use the same
reasoning as before, that is, if (x1, . . . ,xn) ∈ A, then we reject H0 and “accept” it otherwise.

The set C (resp., A) such that if T (x1, . . . ,xn) ∈C (resp., (x1, . . . ,xn) ∈ A), then H0 is rejected
(with probability 1) is called the critical region of the test. There are four possibilities that can
arise when one uses this procedure:

1. H0 is accepted when it is correct;
2. H0 is rejected when it is correct;
3. H0 is accepted when it is incorrect (and, thus, H1 is correct);
4. H0 is rejected when it is incorrect (and, thus, H1 is correct).

Possibilities 2. and 3. above are known, respectively, as type I and type II errors.
We can now present the basic theory underlying hypothesis testing.

Definition 8.1 A Borel-measurable function ϕ : Rn→ [0,1] is a test function. Further, a test
function ϕ is a test of hypothesis H0 : θ ∈Θ0 against the alternative H1 : θ ∈Θ1, with error

probability (or significance level) α , if

Eθ [ϕ(X1, . . . ,Xn)]≤ α for each θ ∈Θ0.

The function (as a function of θ ) Eθ [ϕ(X1, . . . ,Xn)] is known as the power function of the

test ϕ and the least upper bound supθ∈Θ0
Eθ [ϕ(X1, . . . ,Xn)] is known as the size of the test ϕ .
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The interpretation of the concepts above is as follows. A test ϕ allows us to assign to each
sample realization (x1, . . . ,xn) ∈Rn a number ϕ(x1, . . . ,xn) ∈ [0,1], which is to be interpreted as
the probability of rejecting H0. Thus, the inequality Eθ [ϕ(X1, . . . ,Xn)]≤ α for θ ∈Θ0 says that
if H0 were true, then the test ϕ rejects it with probability

Eθ [ϕ(X1, . . . ,Xn)] = P( reject H0 | H0 is true)

= P(T (X1, . . . ,Xn) ∈C | H0) = P((X1, . . . ,Xn) ∈ A | H0)≤ α.

In other words, the definition of test requires that the probability of the type I error exceeds not
the amount α .

There is an intuitive class of tests, used often in applications, called nonrandomized tests,
such that ϕ(x1, . . . ,xn) = 1 if (x1, . . . ,xn) ∈ A and ϕ(x1, . . . ,xn) = 0 if (x1, . . . ,xn) /∈ A for some
set A ⊂ Rn (i.e., ϕ is the indicator function IA for a subset A of sample realizations). In the
sequel, we will make use of this class of tests.

Given an error probability equal to α , let us use (α,Θ0,Θ1) as short notation for our hypoth-
esis testing problem. Also, let Φα be the set of all tests for the problem (α,Θ0,Θ1).

Definition 8.2 Given a random sample {X1,X2, . . . ,Xn} from Fθ . A test ϕ̂ ∈ Φα is a most

powerful test against an alternative θ ′ ∈Θ1 if

Eθ ′ [ϕ̂(X1, . . . ,Xn)]≥ Eθ ′ [ϕ(X1, . . . ,Xn)] for each ϕ ∈Φα .

If a test ϕ̂ ∈Φα is a most powerful test (uniformly) against each alternative θ ′ ∈Θ1, then ϕ̂

is a uniformly most powerful test.

To gain intuition on this, suppose that both hypotheses are simple so that ({θ0} ,{θ1} ,α) is
our hypotheses testing problem. Then, note first that

Eθ1 [ϕ(X1, . . . ,Xn)] = P( reject H0 | H1 is true)

= P(T (X1, . . . ,Xn) ∈C | H1) = P((X1, . . . ,Xn) ∈ A | H1)

= 1−P(accept H0 | H1 is true) .

Note that the expected value Eθ1 [ϕ(X1, . . . ,Xn)] is the power of the test evaluated at the
alternative hypothesis. Then, when we seek for a most powerful test, we are indeed trying to
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solve the problem

min
A⊂Rn

Pθ1[(X1, . . . ,Xn) ∈ Ac]

s.t.: Pθ0[(X1, . . . ,Xn) ∈ A]≤ α.

In other words, the method of a most powerful test lead us to minimize the probability of type II
error subject to the restriction that the probability of type I error exceeds not α , as imposed by
the definition of the test. This method then gives us the practical procedure to follow in choosing
the critical region for testing a hypothesis: choose the critical region (and, therefore, the test)
in such a way that, for a given size α (or probability of type I error), the power of the test is
maximized (or, equivalently, the probability of type II error is minimized).

Note that, for a general hypotheses testing problem (Θ0,Θ1,α), finding a uniformly most
powerful test is equivalent to proposing a critical region A⊂Rn that, for each θ1 ∈Θ1, minimizes
the probability Pθ1[(X1, . . . ,Xn) ∈ Ac] under the restriction

sup
θ0∈Θ0

Pθ0[(X1, . . . ,Xn) ∈ A]≤ α.

� Example 8.1 [KK] Let {X1,X2, . . . ,Xn} be a random sample from a normal distribution
N(µ,1). We know that µ ∈Θ = {µ0,µ1}, µ0 < µ1. Consider the test

H0 : µ = µ0;

H1 : µ = µ1,

so that both H0 and H1 are simple hypotheses. We choose the sample mean Xn as statistic so that,
intuitively, one would accept H0 if Xn is “closer” to µ0 than to µ1. That is, one would reject H0

if Xn > c, for some constant c, and would otherwise accept H0. Then, for 0 < α < 1, we have

α = P( reject H0 | H0 is true) = P(Xn > c |µ = µ0)

= P
(

Xn−µ0

1/
√

n
>

c−µ0

1/
√

n

)
= 1−FZ

(
c−µ0

1/
√

n

)
,

where Z ∼ N(0,1). Therefore, the value c must solve the equation

FZ

(
c−µ0

1/
√

n

)
= 1−α,
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so that one obtains

c = µ0 +
z(1−α)√

n
,

where z(1−α) denotes the realization z of the random variable Z that such that P(Z ≤ z) =

1−α , i.e., the quantile of order (1−α) of the distribution of Z. Therefore, the corresponding
nonrandomized test ϕ is specified as

ϕ(x1, . . . ,xn) =

1 if ∑
n
i=1 xi

/
n > µ0 + z(1−α)

/√
n;

0 otherwise.

Finally, the power of the test at µ1 is

E[ϕ(x1, . . . ,xn) |µ = µ1] = P
(

Xn > µ0 +
z(1−α)√

n

∣∣∣∣ µ = µ1

)
= P

(
Xn−µ1

1/
√

n
> (µ0−µ1)

√
n+ z(1−α)

)
= 1−FZ

(
z(1−α)− (µ1−µ0)

√
n
)
.

�

The result below, due to Neyman and Pearson, gives us a general method for finding a most
powerful test of a simple hypothesis against a simple alternative. Following the notation used
in the previous chapter, let L(x1, . . . ,xn;θ) denote the likelihood function of the random sample
{X1, . . . ,Xn} given that the true value of the parameter θ is θ .

Theorem 8.1 — Neyman-Pearson Fundamental Lemma. Let {X1,X2, . . . ,Xn} be a random
sample from a distribution function Fθ . Let θ0 and θ1 be two distinct values of θ and let k be
a positive number. Consider the following test of two simple hypotheses:

H0 : θ = θ0;

H1 : θ = θ1.

Let A and Ac be a subset of the set of sample realizations and its complement, respectively,
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such that

L(x1, . . . ,xn;θ0)

L(x1, . . . ,xn;θ1)
≤ k, for each (x1, . . . ,xn) ∈ A,

L(x1, . . . ,xn;θ0)

L(x1, . . . ,xn;θ1)
≥ k, for each (x1, . . . ,xn) ∈ Ac,

α =
∫
· · ·
∫

A

L(x1, . . . ,xn;θ0)dx1 · · ·dxn.

Then, A is a critical region for a most powerful test ϕ̂ against the alternative θ1.

The most powerful test ϕ̂ identified in the theorem above must be necessarily specified as:

ϕ̂ =


1 if fθ1(x1, . . . ,xn)> q fθ0(x1, . . . ,xn);

γ(x1, . . . ,xn) if fθ1(x1, . . . ,xn) = q fθ0(x1, . . . ,xn);

0 if fθ1(x1, . . . ,xn)< q fθ0(x1, . . . ,xn),

for some q≥ 0 and 0≤ γ(x1, . . . ,xn)≤ 1. When q→ ∞, ϕ̂ is specified as:

ϕ̂ =

1 if fθ0(x1, . . . ,xn) = 0;

0 if fθ0(x1, . . . ,xn)> 0.

Finally, it can be shown that there is a functional form for γ(x1, . . . ,xn) such that γ indeed does
not depend on (x1, . . . ,xn) and the resulting ϕ̂ is as identified by the Neyman-Pearson Lemma.

� Example 8.2 [KK] As in a previous example, consider a random sample {X1,X2, . . . ,Xn}
from a normal distribution N(µ,1). We know that µ ∈Θ = {µ0,µ1}, µ0 < µ1. Consider the test

H0 : µ = µ0;

H1 : µ = µ1,

so that both H0 and H1 are simple hypotheses. Then,

L(x1, . . . ,xn; µs) = (2π)−n/2 exp

{
−1

2

n

∑
i=1

(xi−µs)
2

}
, s = 0,1,
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so that

L(x1, . . . ,xn; µ0)

L(x1, . . . ,xnµ1)
= exp

{
−1

2

n

∑
i=1

(xi−µ0)
2 +

1
2

n

∑
i=1

(xi−µ1)
2

}
≤ k,

for some positive number k that depends on α . Taking logs in the expression above, we obtain

−
n

∑
i=1

(xi−µ0)
2 +

n

∑
i=1

(xi−µ1)
2 ≤ 2ln(k).

From the equation above, using the fact that, for s = 0,1,

n

∑
i=1

(xi−µs)
2 =

n

∑
i=1

(xi− xn)
2 +n

(
xn−µs

)2
+2(xn−µs)

n

∑
i=1

(xi− xn),

where ∑
n
i=1(xi− xn) = nxn−nxn = 0, we get to

n
[(

xn−µ1
)2−

(
xn−µ0

)2
]
≤ 2ln(k).

Then, by computing the squares of the terms in brackets and by rearranging terms, we obtain

xn(µ0−µ1)≤
1
2
(µ2

0 −µ
2
1 )+

1
n

ln(k).

Therefore, the critical region identified by the Neyman-Pearson Lemma is

xn ≥
1
2
(µ0 +µ1)−

ln(k)
n(µ1−µ0)

.

Note that the statistic selected is the sample mean. Finally we set

1
2
(µ0 +µ1)−

ln(k)
n(µ1−µ0)

=: c,

where c is nothing but the constant proposed in the previous example. We can then proceed as in
that example to obtain

c = µ0 +
z(1−α)√

n
.=

1
2
(µ0 +µ1)+

lnc
n(µ1−µ0)

.

�

We end this section by discussing briefly the application of the Neyman-Pearson approach to
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testing a simple hypothesis against a composite alternative. Using the Neyman-Pearson Lemma,
one can conclude that a test is a most powerful test for a simple hypothesis against a single value
of the parameter as alternative. To follow this approach for a set of alternatives which is not a
singleton, we should check for the Neyman-Pearson criterion for each value of the parameter
within the set of alternatives. Thus, we would be searching for a uniformly most powerful test.
Unfortunately, it is typical that the a uniformly most powerful test does not exist for all values of
the parameter. In such cases, we must seek for tests that are most powerful within a restricted
class of tests. One such restricted class is, for instance, the class of unbiased tests.

8.2 Tests Based on the Likelihood Ratio [K]
We present here a classical method for testing a simple or composite hypothesis against a simple
or composite alternative. This method is based on the ratio of the sample likelihood function
given the null hypothesis over the likelihood function given either the alternative or the entire
parameter space. This method gives us a test which is based on a sufficient statistic, if one exists.
Also, this procedure often (but not necessarily) leads to a most powerful test or a uniformly most
powerful test, if they exist.

Definition 8.3 Given a hypothesis testing problem (α,Θ0,Θ1), the critical region

A = {(x1, . . . ,xn) ∈ Rn : λ (x1, . . . ,xn)< k} ,

where k ∈ R is a constant and

λ (x1, . . . ,xn) =
supθ∈Θ0

L(x1, . . . ,xn;θ)

supθ∈Θ L(x1, . . . ,xn;θ)
,

corresponds to a test called a generalized likelihood ratio test.

In addition, it can be shown that the critical region specified above gives us the same test as the
region specified using the statistic

ρ(x1, . . . ,xn) =
supθ∈Θ1

L(x1, . . . ,xn;θ)

supθ∈Θ0
L(x1, . . . ,xn;θ)

.

The idea behind this method is as follows. The numerator in the ratio λ is the best expla-

nation of (X1, . . . ,Xn) under H0 while the denominator is the best possible explanation of
(X1, . . . ,Xn). Therefore, this test proposes that H0 be rejected if there is a much better explanation
of (X1, . . . ,Xn) than the one provided by H0.
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For practical purposes, 0 ≤ λ ≤ 1 and the value of the constant k is determined using the
restriction of the size of the test

sup
θ∈Θ0

P(λ (x1, . . . ,xn)< k) = α,

where, accordingly, α is the significance level of the test.

Theorem 8.2 [K] For a hypothesis testing problem (α,Θ0,Θ1), the likelihood ratio test is a
function of each sufficient statistic for the parameter θ .

� Example 8.3 [KK] Let {X} be a random sample, consisting of a single random variable,
from a binomial distribution b(n, p). We seek a significance level α for the test

H0 : p≤ p0;

H1 : p > p0,

for some 0 < p0 < 1. Then, if we propose the monotone likelihood ratio test, we have

λ (x) =
supp≤p0

(n
x

)
px(1− p)n−x

sup0≤p≤1
(n

x

)
px(1− p)n−x

=
maxp≤p0 px(1− p)n−x

max0≤p≤1 px(1− p)n−x .

Now, it can be checked that the function px(1− p)n−x first increases until it achieves its maximum
at p = x

/
n and from then on it decreases. Therefore,

max
0≤p≤1

px(1− p)n−x =
(x

n

)x(
1− x

n

)n−x

and

max
p≤p0

px(1− p)n−x =

px
0(1− p0)

n−x if p0 < x
/

n( x
n

)x (1− x
n

)n−x if p0 ≥ x
/

n.

Consequently,

λ (x) =


px

0(1−p0)
n−x

(x/n)x[1−(x/n)]n−x if x > np0

1 if x≤ np0.

It follows that λ (x) ≤ 1 for x > np0 and λ (x) = 1 for x ≤ np0, so that λ is a function not
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increasing in x. Therefore, λ (x)< k if and only if x > k′ and we should reject H0 : p≤ p0 when
x > k′.

Since X is a discrete random variable, it may be not possible to obtain the size α . We have

α = sup
p≤p0

Pp[X > k′] = Pp0[X > k′].

If such k′ does not exist, then we should choose an integer k′ such that

Pp0[X > k′]≤ α and Pp0[X > k′−1]> α.

�

� Example 8.4 [KK] Let {X1,X2, . . . ,Xn} be a random sample from a normal distribution
N(µ,σ2) and consider the hypothesis testing problem

H0 : µ = µ0;

H1 : µ 6= µ0,

where σ2 is also unknown. Here we have θ = (µ,σ2),

Θ =
{
(µ,σ2) ∈ R2 : −∞ < µ < ∞, σ

2 > 0
}
,

and

Θ0 =
{
(µ0,σ

2) ∈ R2 : σ
2 > 0

}
.

We obtain

sup
θ∈Θ0

L(x1, . . . ,xn;θ) =
1

(σ̂0
√

2π)n
exp
[
−∑

n
i=1(xi−µ0)

2

2σ̂2
0

]
,=: Φ

σ̂2
0
(x1, . . . ,xn),

where σ̂2
0 = (1/n)∑

n
i=1(xi−µ0)

2 is nothing but the maximum likelihood estimator for σ2 given
that the mean of the distribution is µ0. It follows that

sup
θ∈Θ0

L(x1, . . . ,xn;θ) =
1

(2π/n)n/2 [∑n
i=1(xi−µ0)2]

n/2 e−n/2.

Now, it can be checked that the maximum likelihood estimator for (µ,σ2) when both µ and σ2
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are unknown is

(µ̂, σ̂2) =

(
Xn,

n

∑
i=1

(Xi−Xn)
2/n

)
.

Then, we obtain

sup
θ∈Θ

L(x1, . . . ,xn;θ) =
1

(2π/n)n/2 [∑n
i=1(xi− xn)2]

n/2 e−n/2.

Therefore,

λ (x1, . . . ,xn) =

[
∑

n
i=1(xi− xn)

2

∑
n
i=1(xi−µ0)2

]n/2

=

[
∑

n
i=1(xi− xn)

2

∑
n
i=1(xi− xn)2 +n(xn−µ0)2

]n/2

=

[
1

1+
[
n(xn−µ0)2

/
∑

n
i=1(xi− xn)2

]]n/2

,

which happens to be a decreasing function in (xn−µ0)
2/

∑
n
i=1(xi− xn)

2. Thus,

λ (x1, . . . ,xn)< k⇔

∣∣∣∣∣ (xn−µ0)/
√

n−1√
∑

n
i=1(xi− xn)2/(n−1)

∣∣∣∣∣> k′⇔
∣∣∣∣√n(xn−µ0)

sn

∣∣∣∣> k′′,

where s2
n = [1/(n−1)]∑n

i=1(xi− xn)
2 is the sample variance and k′′ = k′

√
(n−1)/n. Also, we

know that the statistic

T (X1, . . . ,Xn) =

√
n(Xn−µ0)

Sn

has a distribution t with n− 1 degrees of freedom (recall Theorem 5.21 (iv)). So, given the
symmetry of the function density of a random variable distributed according to a t, we should
make use of the quantile tn−1,α/2 to specify k′′. �

8.3 Practice Exercises

Exercise 8.1 Let {X1, . . . ,Xn} be a random sample from a normal distribution N(µ,1). Use
the result in the Neyman-Pearson Lemma to test the null hypothesis H0; µ = 0 against the
alternative H1; µ = 1. For n = 25 and α = 0.05, compute the power of this test when the
alternative is true.
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Exercise 8.2 Let {X1, . . . ,Xn} and {Y1, . . . ,Ym} be independent random samples from normal
distributions N(µ1,σ

2
1 ) and N(µ2,σ

2
2 ), respectively. Use a monotone likelihood ratio test to

test the hypothesis H0; σ2
1 = σ2

2 against H1; σ2
1 6= σ2

2 .
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9. Combinatorics [KK]

This chapter presents several combinatorial formulas which are commonly used for counting
the number of elements of a set. These methods are very useful to compute probabilities when
the underlying set of elementary events is finite and all elementary events are equally likely.
Under these conditions of equal likelihood, the probability of an event A is simply computed as
P(A) = |A|/ |Ω |.

9.1 Ordered Samples and Permutations

Let us begin with a finite set S = {1,2, . . . ,s} of reference. We will propose our set of elementary
events Ω , depending on the particular experiment of interest, taking the set S as a starting point.
Suppose that we are interested in drawing a sequence of m ≤ s elements from the set S and
that, in doing so, we care about the order of the draws. Then, the outcome of the draws can
then be formally viewed as an m-tuple ω = (ω1,ω2, . . . ,ωm), where ωi is the element in the ith
draw. One option here is that we draw such a sequence ω by putting each drawn element back
into the set before the next element is drawn. This procedure is referred to as sampling with

replacement. Here, we have Ω = Sm so that |Ω |= sm. Another option requires that we do not
return the elements into the set before the following draw. This procedure is commonly known as
sampling without replacement. In this case, we have Ω =

{
(ωi)

m
i=1 : ωi 6= ω j for each i 6= j

}
so that |Ω |= s(s−1)(s−2) · · ·(s−m+1). When the sampling is without replacement and, in
addition, we care about the order of the draws, counting the elements ω ∈Ω is often referred to
as counting permutations. Let Ps

m = s(s−1)(s−2) · · ·(s−m+1) indicate the number of different
possible m-tuples drawn when there is no replacement, or permutations of m elements out of s
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elements. Notice that, when the elements from S are drawn m = s times without replacement,
then we obtain s! = Ps

s possible permutations as the outcomes of the experiment. In other words,
we are computing the number of ways of obtaining an ordered subset (or tuple) of m elements
from a set of s≥ m elements.

In many applications, permutations are often associated with a the following type of problems.
Suppose that we permute randomly m≤ s elements from the set S among themselves and then
ask about their final positions along some string. Here, we must identify each position i after the
rearrangement with the component ωi of ω which, in turn, corresponds to the element drawn
from the set S. Also, notice that, since two distinct elements from S cannot end up in the same
position, we are in fact considering random sampling without replacement. Consequently, the
number of possible ways of distributing the s elements into the m final positions is given by Ps

m.
As an example of this type of problems, suppose that we are interested in the event A =“q≤ s

pre-specified elements from the set S end up in m pre-specified positions along some string.”
Let Q be the pre-specified subset of elements of S. Given that q elements from S are required
to end up in fixed positions, the number of tuples with s−q coordinates that can be extracted
without replacement from the set S\Q is (s−q)!. Therefore, |A|= (s−q)! and the probability
that q specified objects from S end up in q specified positions after permuting randomly among
themselves the s distinct objects is

P(A) =
(s−q)!

s!
=

1
s(s−1) · · ·(s−q+1)

=
1
Ps

q
.

Permutations are also useful in problems where a random sample of size m is chosen from a
set S of s distinct objects with replacement. In these case, we may ask about the probability of
the event A=“no element appears twice in the sample.” Note that the cardinality of the set of
elementary events in this problem is sm. Also, the number of elementary events from the sample
set where no element from S appears twice, out of the sm possible elementary events, is nothing
but the cardinality of

A =
{
(ωi)

m
i=1 : ωi 6= ω j for each i 6= j

}
.

But this is precisely the cardinality of the set of elementary events associated with an experiment
of random sampling without replacement from that set S. Thus, the probability we are interested
in can be computed as

P(A) =
Ps

m
sm =

(
1− 1

s

)(
1− 2

s

)
· · ·
(

1− m−1
s

)
. (9.1)
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A typical problem with this form is the one commonly refereed to as the “birthday problem.”

� Example 9.1 [K] Suppose that we wish to compute the probability of the event A =“no two
people from a group of five friends have a common birthday.” Let us ignore the leap years and
make the quite unrealistic assumption that that birth rates are exactly equal likely over the year.
Then, using the expression obtained in (Eq. (9.1)) above with m = 5 and s = 365, so we can
easily compute

P(A) = (1−1/365)(1−2/365)(1−3/365)(1−4/365).

�

The following example makes use of permutations as well.

� Example 9.2 [K] Suppose that a committee of 5 members, consisting of a president, a
secretary and three officials is to be selected from a club of 50 members. The officials will
be ranked as official 1, 2 and 3, according to the degree of their importance within the club.
The presidency and the secretary position are automatically assigned, respectively, to the oldest
and the youngest members of the club. Then, the three officials are selected at random from
the remaining 48 members of the club. Suppose that we wish to obtain the probability that
three friends, Peter, Paul and Pierce, end up chosen, respectively, as official 1, 2 and 3. Notice
that, since two pre-specified members of the set {1, . . . ,50} must end up in two pre-specified
positions, there are P48

3 ways in which the three officials are selected, provided that the order of
the sequence of size 3 matters. Therefore, the sought probability is 1/P48

3 = 1/(48 ·47 ·46). �

9.2 Combinations

In some problems, we are interested in computing the number of different subsets of size m≤ s

that can be extracted from the reference set S. In other words, we wish to compute the number of
tuples that can be obtained under the restriction that the order of its coordinates does not matter.
Here notice that there are Ps

m different sequences of size m that can be drawn from S without
replacement. Also note that the elements of each set M ⊂ S of m elements can be rearranged in
m! different ways. Then, since we wish to ignore the order in which the elements are selected,
then these m! reorderings of the elements of M should be considered as being the same object
of interest. Therefore, there are Ps

m/m! different samples of size m that can be drawn from S

without replacement and regardless the order of its elements. These subsets are referred to as
combinations of m elements from a set of s elements. Using the binomial operator, it is usual to
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write (
s
m

)
=

Ps
m

m!
=

s!
m!(s−m)!

.

To illustrate how combinations can be used in computing probabilities, let us consider again
the experiment, already analyzed in Section section 1.3 , where a coin is tossed n times and
we wish to compute the probability of A =“at least one head shows up.” A way to tackle this
problem, different from the one proposed in Section section 1.3, would require to consider
the events Ai =“there shows up exactly i heads.” Then, A = ∪n

i=1Ai with Ai∩A j = /0 for each
i, j = 1, . . . ,n such that i 6= j. In this case, we obtain P(A) = ∑

n
i=1 P(Ai). To compute each P(Ai),

notice that
(n

i

)
gives us the number of subsets of size i that can be extracted from 1, . . . ,n, or,

equivalently the cardinality of the event “i tosses result in head shows up while, at the same time,
the remaining n− i tosses shows up tails.” This is precisely the cardinality of Ai. Therefore, we
can compute

P(A) =
∑

n
i=1
(n

i

)
2n .

The following examples deal with some of the concepts presented in this Appendix.

� Example 9.3 [K] Suppose that some Economics department consists of 8 full professors, 14
associate professors, and 18 assistant professors. A committee of 5 is to be selected at random
from the faculty of the department and suppose that we want to compute the probability that all
the members of the committee are assistant professors. To answer this, notice first that in all
there are 40 faculty members so that the committee of five can be chosen from the forty in

(40
5

)
possible combinations. Also, there are 18 assistant professors so that the committee of five can
be chosen from them in

(18
5

)
possible ways. Therefore, we can compute the probability of our

event of interest as
(18

5

)/(40
5

)
. �

� Example 9.4 [KKK] Consider an experiment where a die is rolled 12 times. Suppose first
that we are interested in computing the probability of getting exactly 2 fives, and let A denote
that event of interest. Here notice that Ω = {1, . . . ,6}12 so that |Ω | = 612. Now consider the
event A(i, j), with i, j = 1, . . . ,12, i < j, which describes the outcome where number 5 shows up
only in the ith and jth rolls. Then, we have

∣∣A(i, j)
∣∣= 510 regardless of the value of the particular

pair (i, j). Also, we know that A(i, j)∩A(k,l) = /0 whenever (i, j) 6= (k, l) and

A =
⋃

(i, j)∈Q

A(i, j),
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where Q is the set specified as

Q =
{
(i, j) ∈ {1, . . . ,12}2 : i < j

}
.

Therefore, we know that

P(A) = |Q|510/610.

All that we need to do then is to compute the cardinality of set Q. Note that Q is nothing but the
set of different pairs of numbers that can be extracted from {1, . . . ,12}. Therefore, its cardinality
is given by

(12
2

)
and we thus obtain

P(A) =
(

12
2

)
510

610 .

Suppose now that we wish to compute the probability that at least 1 one shows up. Let B

denote that event of interest and consider the event Bk, where k = 1,2, . . . ,12, which describes
the outcome such that number 1 shows up exactly k times. Then, we have B = ∪12

k=1Bk and
Bk∩Bl = /0 whenever k 6= l. Therefore, we know that P(B) = ∑

12
k=1 P(Bk). Following the same

reasoning as above, we obtain

P(B) =
∑

12
k=1
(12

k

)
512−k

612 .

�

� Example 9.5 [KKK] Suppose that n people throw their hats into a box and, after that, each
person picks one hat from the box at random. Let us consider the events: A =“each person
gets his own hat back,” B =“the first m people who pick up a hat get their own hats back,” and
C =“everyone among the first m people who pick up a hat get a hat that belongs to someone
of the last m people who pick up a hat.” Suppose, in addition, that each hat thrown into the
box has a probability p ∈ (0,1) of getting dirty (this being unrelated to what happens to other
hats or to who picks them). Consider the events D =“the first m people pick up clean hats” and
E =“exactly m people pick up clean hats”.

To compute the probabilities of these events, note first that

Ω =
{
(ω1, . . . ,ωn) ∈ {1, . . . ,n} : ωi 6= ω j ∀ i 6= j

}
so that |Ω |= n!. Then, P(A) = P({ω}) for ω = (1,2, . . . ,n) without loss of generality, so that
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P(A) = 1/n!. For B, note that the number of ways of assigning the remaining n−m hats after
the first m hats have been assigned is (n−m)! so that P(B) = (n−m)!/n!. Also, since there are
m! ways of assigning the first m hats among the first m people and (n−m)! ways of assigning
the remaining ones, we have P(C) = m!(n−m!)/n! =

(n
m

)−1.

For event D, we have that the probability that a person picks a clean hat is (1− p) so that, by
the independence assumption, P(D) = (1− p)m. As for event E, note first that, for each given
group G ⊂ {1,2, . . . ,n} of m people, we can define the event FG=“every person i ∈ G picks a
clean hat while every person j /∈ G picks a dirty hat”. Then, the events {FG}G⊂{1,...,n} satisfy
FG∩FG′ = /0 for each G 6= G′. Notice that P(FG) = (1− p)m pn−m for any G⊂ {1, . . . ,n}. Since
there are

(n
m

)
of such events, we finally obtain

P(E) = P(∪G⊂{1,...,n}FG) = ∑
G⊂{1,...,n}

P(FG) =

(
n
m

)
(1− p)m pn−m.

�

� Example 9.6 [KKK] Suppose that a set of n balls is distributed randomly into n boxes and
that we want to compute the probability that only the first box ends up being empty. Here, an
elementary event must be identified with the final position of the balls so that ωi should be
interpreted as the box where the ith ball ends up. Then, the sample space is Ω = {1, . . . ,n}n

so that |Ω |= nn. Notice that we are considering random sampling with replacement since two
different balls may end up in the same box. Consider the event A =“only box 1 ends up being
empty.” Notice that this can happen if and only if exactly one of the remaining n− 1 boxes
contains two balls and all the other n−2 boxes have exactly one ball each. Consider then the
event Bi =“box 1 ends up empty, box i ends up with two balls, and the remaining n−2 boxes
end up with exactly one ball each.” We have A = ∪n

i=2Bi and Bi∩B j = /0 whenever i 6= j.

To compute P(Bi), notice first that the number of subsets that can be extracted from {1, . . . ,n}
containing two balls is

(n
2

)
. Then, the remaining (n−2) balls can be rearranged in the remaining

(n−2) boxes in (n−2)! different ways. Therefore, the number of distinct ways in which one
can put no ball in box 1, two balls into box i, and exactly one ball in each of the remaining boxes
is
(n

2

)
(n−2)!. We obtain

P(Bi) =

(n
2

)
(n−2)!
nn ,
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so that the probability of our event of interest is

P(A) =
n

∑
i=2

P(Bi) =
(n−1)

(n
2

)
(n−2)!

nn =

(n
2

)
(n−1)!
nn .

�

Finally, some combinatorial problems are of the following type. Suppose that a box contains
r red balls and b black balls, and that a random sample of size m is drawn from the box without
replacement. Here we want to compute the probability that this sample contains exactly k red
balls and, therefore, m− k black balls. The essence of this type of problem is that the total
population can be partitioned into two classes. A random sample of a certain size is taken and
we ask about the probability that the sample contains a specified number of elements of the
two classes. First, notice that we are interested only in the number of red and black balls in the
sample and not in the order in which these balls are drawn. Thus, we are dealing with sampling
without replacement and without regard to order. Then, we can take as our sample space the
family of all samples of size m drawn from a set of b+ r without replacement and without regard
to order. As argued earlier, the probability that we must assign to each of these samples is(

r+b
m

)−1

.

We need also count the number of ways in which a sample of size m can be drawn so as to have
exactly k red balls. Notice that the k red balls can be chosen from the subset of r red balls in(

r
k

)
possible ways without replacement and without regard to order, and the m− k black balls can be
chosen from the subset of b black balls in(

b
m− k

)
ways without replacement and without regard to order. Since each choice of k red balls can be
paired with each choice of m− k black balls, there are a total of(

r
k

)(
b

m− k

)
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possible choices. Therefore, the probability of our event of interest can be computed as

(
r
k

)(
b

m− k

)/(
r+b

m

)
.

The following example makes use of the reasoning above.

� Example 9.7 [KK] We consider a box that contains r numbered balls and draw from it
a random sample of size n < r without replacement. We annotate the numbers of the balls
and returned them to the box. Then, we take a second random sample of size m < r without
replacement as well. Suppose that we wish to compute the probability that the two samples
have exactly l balls in common. To answer this, notice that we can consider that the first sample
makes a partition of the set of balls into two classes, these n balls which were picked and these
r−n that were not. This problem then requires us simply to compute the probability that the
sample of size m contains exactly l balls from the first class. So, the probability of our event of
interest is(

n
l

)(
r−n
m− l

)/(
r
m

)
.

�

9.3 Practice Exercises

Exercise 9.1 There are three coins in a box. One is a two-headed coin, another is a two-tailed
coin, and the third is a fair coin. One of the three coins is chosen at random and flipped. It
shows heads. What is the probability that it is the two-headed coin?

Exercise 9.2 Two dice are rolled once and the 36 possible outcomes are equally likely.
Compute the probability that the sum of the numbers on the two faces is even.

Exercise 9.3 A box has 10 numbered balls. A ball is picked at random and then a second ball
is picked at random from the remaining 9 boxes. Compute the probability that the numbers
on the two selected balls differ by two or more.

Exercise 9.4 A box has 10 balls, 6 of which are black and 4 of which are white. Three balls
are removed at random from the box, but their colors are not noted.
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(a) Compute the probability that a fourth ball removed from the box is white.
(b) Suppose now that it is known that at least one of the three removed balls is black. Compute
the probability that all three of the removed balls are black.

Exercise 9.5 A box has 5 numbered balls. Two balls are drawn independently from the box
with replacement. It is known that the number on the second ball is at least as large as the
number on the first ball. Compute the probability that the number on the first ball is 2.

Exercise 9.6 Two points are randomly chosen from the interval [0,1]. Compute the probabil-
ity that the length of each of the three segments formed in this way be above 1/4.

Exercise 9.7 Given the digits 1, 2, 3, 4, and 5, how many four-digit numbers can be formed
if
(a) there is no repetition;
(b) there can be repetition;
(c) the number must be even and there is no repetition;
(d) if the digits 2 and 3 must appear in that order in the number and there is no repetition.

Exercise 9.8 A bridge deck has 52 cards dividend into 4 suits of 13 cards each: hearts,
spades, diamonds, and clubs. Compute the probability that, when drawing 5 cards form a
bridge deck (a poker hand),
(a) all of them are diamonds;
(b) one card is a diamond, one a spade, and the other three are clubs;
(c) exactly two of them are hearts if it is known that four of them are either hearts or diamonds;
(d) none of them is a queen;
(e) exactly two of them are kings;
(f) exactly three of them are of the same suit.

Exercise 9.9 In a hand of 13 cards drawn from a bridge deck, compute the probability of
getting exactly 5 clubs, 3 diamonds, 4 hearts, and 1 spade.

Exercise 9.10 A man has 8 keys one of which fits the lock. He tries the keys one at a time, at
each attempt choosing at random from the keys that were not tried earlier. Find the probability
that the 6th key tried is the correct one.
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Exercise 9.11 A set of n balls is distributed at random into n boxes. Compute the probabilities
of the following events:
(a) exactly one box is empty;
(b) only one box is empty if it is known that box 1 is empty;
(c) box 1 is empty if it is known that only one box is empty.

Exercise 9.12 Suppose that n balls are distributed at random into r boxes. Compute the
probability that the box 1 contains exactly k balls, where 0≤ k ≤ n.

Exercise 9.13 A group of 3 balls are drawn simultaneously from a box that contains 10
numbered balls. Compute the probability that balls 1 and 4 are among the three picked balls.

Exercise 9.14 A random sample of size n is drawn from a set of s elements. Compute the
probability that none of k pre-specified elements is in the sample if the method used is:
(a) sampling without replacement;
(b) sampling with replacement.

Exercise 9.15 A set of n objects are permuted among themselves. Show that the probability
that k pre-specified objects occupy k pre-specified positions is (n− k)!/n!.

Exercise 9.16 Two boxes contains n numbered balls each. A random sample of k ≤ n is
drawn without replacement from each box. Compute the probability that the samples contain
exactly l balls having the same numbers in common.
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This chapter deals briefly with the general concept of integral for the case where it is applied to
random variables. Integration is the approach used in modern mathematics to compute areas and
volumes, so that it provides naturally a tool to compute measures, in particular, the Lebesgue
measure.

Consider a probability space (Ω ,F ,P) and let us begin by taking a simple random variable
X on (F ,P) so that X = {x1,x2, . . . ,xn}. Let us denote by Ai = {ω ∈Ω |X(ω) = xi} ∈ F ,
i = 1, . . . ,n, the events that correspond to the realizations of the random variable. Since it is
simple, the random variable X admits the following representation:

X(ω) =
n

∑
i=1

xiIAi(ω),

where IAi is the indicator function of the set Ai, that is, IAi(ω) = 1 if ω ∈ Ai and IAi(ω) = 0 if
ω /∈ Ai.

Then, the integral of the simple variable X with respect to P is

∫
X(ω)dP(ω) =

∫
X(ω)P(dω) =

n

∑
i=1

xiP(Ai).

The integration problem consists of enlarging this definition so that it may be applied to more
general classes of random variables. One way of defining the general notion of integral requires
that we apply it to any bounded random variable X . Then, X is said to be P-integrable (or
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P-summable) if

sup
{∫

Y (ω)dP(ω) : Y ∈ SP and Y ≤ X
}
= inf

{∫
Y (ω)dP : Y ∈ SP and X ≤ Y

}
,

where SP denotes the set of simple random variables on the probability space (Ω ,F ,P). If it
exists, the common value above is referred to as the integral of X with respect to P. The integral
of X with respect to P is usually denoted either as

∫
XdP,

∫
X(ω)dP(ω), or

∫
X(ω)P(dω).

There is a number of different approaches to construct the abstract concept of integral. One of
these approaches which is closely related to the notion of measure is that of Lebesgue integral.
On the other hand, when one deals in calculus with Euclidean spaces, the most used approach is
that of the Riemann integral.



11. Extension of Probability Measures
(Continued) [KKK]

This chapter deals in more detail with the problem of the extension of probability measures.
Given a set of elementary events Ω , sometimes one starts by computing probabilities not on a
σ -algebra on Ω but on an algebra A on such as set. A reason to follow this approach is that
of considering a relatively simple family of sets since, in general, an algebra contains less sets
than a σ -algebra constructed from such an algebra. Then, if we have a probability measure Q

on the algebra A and are only interested in computing probabilities of occurrence of events
A ∈A , such a measure Q would be enough for our purposes. However, as an algebra, A might
not contain some relatively more complicated events, such as the unions of arbitrary countable
sequences of events in A . For these cases, we would like to know whether there is a systematic
way to proceed, starting from the probability measure Q, in order to compute the probabilities of
occurrence of these more complicated events.

To gain intuition about this problem, let us consider an example where a dice is rolled an
infinitely number of times so that Ω = {1, . . . ,6}∞. The choice of an appropriate σ -algebra is
not obvious here. To consider a suitable family of events for this case, let us fix a finite number k

which indicates that we begin by focusing only on the first k draws of the dice. In particular, we
wish to consider events of the form

A =
{(

(ω1, . . . ,ωk),ωk+1, . . .
)
∈ {1, . . . ,6}∞ : (ω1, . . . ,ωk) ∈ Ak

}
,

where AK ∈ 2Ωk , for Ωk = {1, . . . ,6}k. Notice that the event A above is nothing but the event
“the outcome of the first k tosses belongs to the set Ak.” For instance, one can consider k = 2
and then ask about the probability of the event A2 =“at least one of the first two draws results
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in a number larger than 4.” In this case, we can resort to the modified set of elementary events
Ω2 = {1, . . . ,6}2 so that |Ω2| = 62. Since Ω2 is finite, we can use for it the σ -algebra as 2Ω2 ,
which is not a very complicated family. Then, if the dice is a fair one, the finiteness of Ω2 allows
us to assign probabilities to the event A2 = {(5,5),(5,6),(6,5),(5,5)} by using a probability
measure Q on 2Ω such that Q(A2) = 4/62 = 1/9. For a general value of the finite number k, one
would simply compute Q(Ak) = |Ak|/6k. Following this reasoning, we can let k to increase so
that we should be able to compute the corresponding probabilities of events when the number
of draws becomes arbitrarily large. A consistent way thus to choose a family of events, for the
case where the dice is rolled an infinitely number of times, would be that of selecting events
of the form Ak and of considering a non-empty family A of such events such that be closed
under complements, and finite unions and intersections. Such a family A would be an algebra
on Ω = {1, . . . ,6}∞ so that one could propose σ(A ) as a suitable σ -algebra in this case. Notice,
however, that our earlier question still remains unanswered in this example. That is, we are able to
assign probabilities to all the events in A by using the probability measure Q(Ak) = |Ak|/62k

and,
if needed, by using the probability rules that allows us to compute probabilities for complements,
and for finite unions and intersections. But, how do we compute probabilities of occurrence of
the events A ∈ σ(A )\A ? A formal procedure to construct an extension of the measure Q to the
set σ(A )\A was was provided by Carathéodory [1918]. Interestingly enough, this probability
extension is unique, a feature that gives crucial consistency to many probability measures that
are commonly proposed on complicated measurable spaces.

Theorem 11.1 — Carathéodory [1918]. [KKK] Let A be an algebra on a nonempty set Ω

and let Q be a measure on A . Then there exists a measure P on σ(A ) such that P(A) = Q(A)

for each A ∈A . Moreover, if Q is a probability measure, then P is unique.

Thus, Theorem 11.1 allows us to construct complicated probability spaces by starting from
relatively much simpler ones, such as we did in the previous example. An important implication
of Theorem 11.1 is that any measure on an algebra on R that contains all intervals can be extended
to a Borel measure on R. This implication, in turn, provides us with a suitable foundation for the
existence of the Lebesgue Measure.

Now, we get into the formal details of the procedure and present another formulation of
Carathéodory’s Theorem.

Definition 11.1 An outer measure δ on an arbitrary nonempty set Ω is set function δ : 2Ω →
R∗+, where R∗+ = R+∪{+∞}, that verifies
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(a) δ ( /0) = 0;
(b) ( monotonicity) for A,B ∈ 2Ω , A⊆ B implies δ (A)≤ δ (B);
(c) (σ -subadditivity) for each sequence {An}∞

n=1 of subsets of Ω , we have δ (∪∞
n=1An) ≤

∑
∞
n=1 δ (An).

Definition 11.2 Let P be a measure on a measurable space (Ω ,F ). The measure P generates
a set function P∗ : 2Ω → R∗+ defined by

P∗(A) = inf

{
∞

∑
n=1

P(An) : {An}∞

n=1 ⊂F and A⊂ ∪∞
n=1An

}
, (CExt)

which is called the Carathédory extension of P.

Intuitively, the Carathédory extension P∗ of a measure P is constructed from P by approxi-
mating events from the outside. If {An}∞

n=1 forms a good covering of A in the sense that they
not overlap one another very much or extend much beyond A, then ∑

∞
n=1 P(An) should be a

good outer approximation to the measure assigned to A. Then, this approach allows for the
following. Consider a measure P on a measurable space (Ω ,F ) and the σ -algebra generated
by F , F ∗ = σ(F ). Then, F ∗ is a σ -algebra larger than F (in the sense that F ∗ ⊇F ). The
formulation of Carathéodory’s Theorem stated below asserts that there exists an outer measure
P∗ on (Ω ,F ∗) such that:
(a) P∗(A) = P(A) for each A ∈F ;
(b) if Q is another measure on (Ω ,F ∗) such that Q(A) = P(A) for each A ∈F , then it must be
the case that Q(A) = P∗(A) for each A ∈F .

Theorem 11.2 [KK] A measure P on a measurable space (Ω ,F ) such that P(Ω)< ∞ has a
unique extension P∗ (i.e., conditions (a) and (b) above are satisfied), defined by Eq. (CExt)
above, to the generated σ -algebra σ(F ). Moreover, the extension P∗ is an outer measure of
Ω .

The extension P∗ of P identified in the theorem above is also known as the outer measure

generated by P. Given a probability space (Ω ,F ,P), the phrase “P-almost everywhere” (which
is often substituted by just “almost everywhere” (or “almost surely”) when the probability
measure P is understood from the context) means “everywhere except possibly for a set A ∈F

with P∗(A) = 0”, where P∗ is the outer measure generated by P. For example, we say that two
functions f ,g : A→ B are P-almost everywhere equal if P∗({a ∈ A : f (a) 6= f (a)}) = 0.
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