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Abstract

This paper studies the evolution of beliefs of a group of Bayesian updaters who are connected
through a social network that enables them to listen to the opinions of others. Each agent
observes a sequence of private signals about the value of an unknown parameter and receives
private messages from others according to her connections in the network. A message conveys
some information about the signal observed by the sender. The informativeness of a message
is not strategically chosen but it is exogenously given by the intensity of the connection. Both
signals and messages are independent and identically distributed across time but not necessarily
across agents. Messages cannot be transmitted through indirect connections in the network. We
first characterize the long-run behavior of an agent’s beliefs in terms of a measure that depends
on the relative entropies of the conditional distributions of signals and messages available to the
agent. Then, we show that the achievement of consensus in the society is closely related to the
presence of prominent agents who are able to affect the evolution of other agents’ opinions over
time. Finally, we show that the influence of the prominent agents must not be very high in order
for the agents to aggregate correctly their private sources of information in the long run.
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1 Introduction

Coordinating decisions when individual payoffs depend on an unknown underlying parameter

requires agents to reach similar beliefs about the parameter. To fix ideas, consider the following

two-player investment game, based on an example from Cripps, Ely, Mailath, and Samuelson

(2008). First, nature chooses a parameter θ ∈
{
θ, θ
}

and each agent i assigns a prior probability

pi to θ being the true parameter value. Then, in each period t = 0, 1, 2, . . . , each agent can choose

either action A, action B, or to wait until the next period. Waiting is costless. Simultaneous

choices of A when the parameter is θ, or B when it is θ, give a payoff of 1 to each. Lone choices

of A or B break joint investments opportunities and give a payoff of −c, for some c > 0. Joint

choices that do not match the parameter give the agents a zero payoff when the parameter is

θ and a payoff of −2c when the parameter if θ. Figure 1 depicts these payoffs for the choices

of A and B. Suppose that, in each period t, each agent receives some additional (private)

information about θ which she uses to update her beliefs. Under what circumstances do there

exist equilibria of this investment game in which the agents coordinate their actions by choosing

action A? Notice that action A will be optimal for an agent in some period only if the agent

assigns probability at least c
1+2c =: p to θ being the true parameter value. Therefore, it is

interesting to know whether the priors pi will evolve over time so as to put eventually, both of

them, at least probability p to θ being the true parameter value. If this sufficient condition is

not satisfied, then coordination in action A will fail.

A B
A 1, 1 −c,−c
B −c,−c 0, 0

A B
A −2c,−2c −c,−c
B −c,−c 1, 1

Parameter θ Parameter θ

Figure 1.— Payoffs from a potential joint opportunity with actions A and B available to each agent.

In most environments, the evolution of beliefs over time depends on how agents are influenced

by neighbors, friends, coworkers, local leaders, and political actors. Social networks are primary

channels that carry news, information, and opinions about products, job vacancies, and political

programs. The aim of this paper is to explore the relation between the network structure that

connects a group of Bayesian updaters and the evolution of their beliefs about some common

parameter of interest.

We consider a stylized model of network-based dynamic belief formation where there are

two types of information transmission: (a) each agent receives private information about the

parameter from an external source and (b) there is some communication between connected

agents about the information they are obtaining from their external sources.
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More in detail, consider a group of agents who care about a payoff-relevant parameter. Each

of them begins with some initial prior and observes over time a sequence of private signals about

the parameter. The informativeness of such a stream of signals is interpreted as the quality of the

channel through which the agent receives information from some external source. In addition,

suppose that the agents are connected through an exogenous (weighted and directed) social

network that specifies a pattern of relations where each agent can listen to (the opinions of)

others. Each directed connection is characterized by an exogenously given weight that describes

the quality of the information transmission from the speaker to the listener. Specifically, at

each date, each agent receives a (non-strategic) message from each agent to whom she has a

directed connection. Such a message is correlated with the sender’s signal so that it conveys some

information about the private signal that the speaker observes. Thus, at each date, each agent

receives some information about the signal that each of her neighbors is currently observing.

Note, however, that the agent receives a message from her neighbor at each date from t = 0 to

each given period t. Therefore, the agent obtains a stream of messages that conveys information

about the stream of signals observed by her neighbor up to each given t.

The amount of information that is transmitted from the speaker to the listener depends only

on the exogenously given weight of their directed connection. This weight can thus be interpreted

as the quality of the channel that connects them. We further assume that the weight of each

connection in the network is constant over time.1

At a more intuitive level, the network describes exogenously given conduits through which

the agents listen to others speak about the signals that they observe. Given this framework, we

ask under which conditions on the network structure will all agents eventually reach a consensus

in beliefs about the parameter value. We also explore the conditions on the network under

which the agents will aggregate correctly the decentralized information that they obtain from

their external sources.

Building upon the model of network influence due to DeGroot (1974), a branch of the litera-

ture on social learning has recently studied how the network structure affects the transmission of

opinions among connected agents. For instance, DeMarzo, Vayanos, and Zwiebel (2003) propose

a network-based explanation for the emergence of “unidimensional” opinions. Closer in spirit to

the questions we propose, they also provide some insights on the correctness of learning. Within

this literature, perhaps the paper closest to ours in terms of the questions asked is Golub and

Jackson (2010). Using a version of the DeGroot’s model, they examine whether all beliefs in a

large group converge to the truth. They show that the attainment of limiting beliefs arbitrarily

1Therefore, in this paper we are not interested in the rich strategic interactions present in a sender-receiver
game since we are assuming that neither the sender nor the receiver choose the informativeness of the messages.
Instead, such informativeness is exogenously given by the quality of the channel that connects speaker and listener
in the network.
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close to the true belief is characterized by the condition that the influence of the most influential

agent vanishes as the size of the group grows.

In the DeGroot’s model, agents update their beliefs by averaging their neighbors’ beliefs

according to the exogenous weights that describe the intensity of the connections between the

agents. Hence, in this framework, agents are not Bayesian updaters and fail to adjust properly

for repetitions and dependencies in information they hear several times. Instead, in the present

paper we consider that the agents revise their beliefs, according to Bayes rule, using both the

signals they receive from their external sources and the messages they hear from the agents to

whom they have directed connections in the network. While our model considers that agents

process the information they receive in a fully rational way, it is rigid in that the agents do not

choose endogenously the weights (or intensities) of their connections and in that such weights

are constant over time.

Our work is also related to the theoretical literature on common learning. The question that

this line of research addresses is whether a group of agents commonly learn (at least approxi-

mately) the true parameter value as time evolves. For a setting where there is no communication

among the agents, Cripps, Ely, Mailath, and Samuelson (2008) show that (approximate) com-

mon learning of the parameter is attained when signals are sufficiently informative and the sets

of signals are finite. This result follows regardless of the pattern of correlations between the

agents’ signals. They assume that the agents start with common priors and ask whether each

agent not only assigns sufficiently high probability to some given parameter value but also to the

event that each other agent assigns high probability to such a value, and so on ad infinitum. Our

approach is different from theirs in that we focus on the agents’ posteriors about the parameter

when they start with possibly different priors and use Bayesian updating rules. In particular,

we do not consider the ex-ante probabilistic assessments that the agents may make about the

histories underlying their beliefs and we do not explore the evolution of the agents’ higher order

beliefs. In this respect, note that our notion of what constitutes similar beliefs departs from

typical concepts of agreement used in the learning literature.2

To lay out the groundwork for our analysis, we need to address two modeling assumptions.

First, we need to adopt a particular measure of the informativeness of signals and messages.

In general, it is not obvious what constitutes a measure appropriate to rank completely a set

of available signals according to their informativeness. Following recent developments on the

ranking of information value, we choose an entropy-based measure. More precisely, we use

2For instance, in their classical justification of the common prior assumption, Savage (1954, p. 48), and
Blackwell and Dubins (1962) establish that Bayesian updaters who observe the same sequences of sufficiently
informative signals will learn individually the true parameter value, and, as a consequence, they will reach an
agreement. Individual learning in this context requires that, conditioned on a parameter value, the agent assigns
probability one to the event that her limiting beliefs put probability one to that parameter value. Also, Acemoglu,
Chernouzhukov, and Yildiz (2009) use a notion of agreement that requires that the agents assign probability one
to the event that their posteriors converge to the same limiting beliefs.
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the average of the relative entropy of the induced posterior (for a one-period Bayesian revision

process) with respect to the prior. This measure, which has some tradition in information theory,

is known as the power measure. The power measure is an interesting measure since it induces

a complete order over signals. At a more intuitive level, the power measure captures, from an

ex-ante viewpoint, the gain of information in moving from the prior to the posterior. We then

identify the informativeness of an external source with the power of the corresponding signal

and the weight of a directed connection with the power of the message associated with such a

connection.3

Second, we need to adopt a notion of what constitutes correct beliefs in our framework. The

beliefs of an outside Bayesian observer who begins with some priors and can use over time the

external sources available to all agents could converge to some limiting beliefs. These limiting

beliefs aggregate the decentralized information available to the agents in the sense that the

evolution of the observer’s beliefs over time obeys to the aggregation of the sources of information

available to all the agents. Furthermore, the evolution of the observer’s beliefs ignores the flows

of information through the network. On the other hand, each agent using only her own private

source and the information she hears from her connections in the network will converge to some

limiting beliefs. Suppose that all the agents’ beliefs converge to some consensus limiting beliefs.

Then, we ask for which networks will the agents’ limiting beliefs coincide with the observer’s

limiting beliefs. Notice that the aggregation of the decentralized information sources provides

us with an estimate of the true parameter value which is arbitrarily accurate as the number of

agents in the society tends to infinity.

Regarding our notion of correct beliefs, an important clarification is in order. We emphasize

that the approach commonly pursued in models within the learning literature in which the

agents observe sequences of signals (e.g., Parikh and Krasucki, 1990; Heifetz, 1996; Koessler,

2001; Steiner and Stewart, 2010; Cripps, Mailath, Ely, and Samuelson, 2008 and 2012) evaluates

the correctness of an agent’s beliefs by conditioning the posteriors on a given value of the

parameter, which is taken as the actual value. Although this paper does make use of sequences

of signals and messages, we are less interested in studying whether the agents either individually

or commonly learn the true parameter value. In contrast, as in the approach pursued, following

the DeGroot’s model, by DeMarzo, Vayanos, and Zwiebel (2003) and by Golub and Jackson

(2010), our main concern in this paper is to analyze whether the network structure allows for

3Entropy-based measures have been successfully applied to propose informativeness orderings. The power of a
signal is used, for instance, by Sciubba (2005) to rank information in her work on survival of traders in financial
markets under asymmetric information. In a recent paper, Cabrales, Gossner, and Serrano (2012) propose, for a
class of no-arbitrage investment problems under ruin-averse preferences, an entropy-based measure that coincides
with the power measure. Their measure is such that one information structure dominates another if and only if
when the investment project associated with the first one is rejected at some price, then so is the project associated
with the second. Thus, the power measure induces a complete order over signals for at least an interesting class
of decision problems.
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the aggregation of the decentralized sources of information possessed by the agents. We consider

sequences of signals and messages not because we are interested in individual and/or common

learning questions but simply because we wish to introduce an ingredient into the DeGroot’s

model that allows for Bayesian updating of beliefs.

Suppose that we defined instead correct beliefs by conditioning posteriors on a given (true)

parameter value. Then, the results provided by Cripps, Mailath, Ely, and Samuelson (2008)

would imply for our model that the agents commonly learn the true parameter value, regardless

of the network structure. This is due to our assumptions that (a) the sets of signals and messages

are finite and that (b) both signals and messages are independent across time. Nevertheless,

as the society becomes large, the aggregation of the private signals constitutes an arbitrarily

accurate estimate of the true parameter value. In addition, if we consider that the number of

agents is sufficiently large, then the assumption that the sets of signals and messages are finite

becomes less compelling. Thus, if we drop this assumption, it is no longer clear whether the

agents commonly learn the true parameter value. In fact, the argument given by Rubinstein

(1989) in his celebrated email game suggests that common learning of the true parameter is

prevented with arbitrarily large sets of signals and messages. Thus, our approach to analyze

correctness of beliefs seems an appropriate one when one focuses on large enough societies.

Our main results begin with a simple but complete characterization of an agent’s limiting

beliefs, in Proposition 1. In general, an agent’s beliefs converge to some beliefs that favor (with

probability one) one particular parameter value. This convergence is determined by both the

informativeness of the private source available to the agent and the influence that she receives

from her directed connections with other agents. The role of the information that the agent

obtains from the private source and from her neighbors can be neatly described in terms of the

the relative entropies of the (conditional) distributions of signals and messages available to her

in the network. Then, using this result, we identify a necessary condition for the achievement

of a consensus in the society, in Corollary 1. This condition, which we label as Inter Group

Connectedness (IGC), requires that each agent be connected with others in the network in a

way such that the evolution of her beliefs can be altered by listening to her neighbors. This

condition involves both the intensity of the agent’s connections with her neighbors and the

nature of the information that the neighbors receive from their sources. Intuitively, a consensus

is achieved only if the are some prominent agents who can influence others so as to change their

minds over time.

In Proposition 3, we provide a sufficient condition on the levels of informativeness of the

directed connections in the network under which, provided that there is a consensus, the agents’

limiting beliefs aggregate correctly the information initially available to all of them. We show

that a society with consensus attains correct limiting beliefs if the influence of the prominent
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agents is not so large so as to affect the evolution of beliefs that one obtains by aggregating the

information initially held by all agents. Thus, by combining the necessary condition in Corollary

1 with the sufficient condition in Proposition 3, we obtain the message that correct limiting beliefs

are associated, on the one hand, with a certain degree of influence by some prominent agents.

On the other hand, the influence by the prominent agents needs to be bounded and must not

be able to manipulate the beliefs that obey to the aggregation of all the agents’ private sources.

In short, to attain consensus and correct limiting beliefs, a certain level of popularity is a bless,

a disproportionate popularity is a curse.

The present paper relates to several lines of research on influence in networks other than the

one that stems from the DeGroot’s model. Acemoglu, Ozdaglar, and ParandehGheibi (2010)

consider that the agents meet pairwise and adopt the average of their pre-meeting beliefs. They

study how the presence of agents who influence the beliefs of others, but do not change their

own beliefs, interferes with the spread of information along the network. Although they do not

consider consensus specifically, our model allows for insights with a similar flavor since some

spread of beliefs among agents with different opinions is required for consensus. In our model,

consensus can be prevented when an agent does not listen enough to agents with different

opinions and, at the same time, is listened by others. Such an agent would play a similar role

to a “forceful” agent in their model. The question of whether consensus is attained under a

non-Bayesian updating rule is analyzed by Acemoglu, Como, Fagnani, and Ozdaglar (2010).

They distinguish between regular agents, who update their beliefs according to the information

they receive from their neighbors, and stubborn agents, who never update their beliefs. They

show that consensus is never obtained when the society contains stubborn agents with different

opinions. Again, this insight bears some resemblance with ours when the connections of some

agent do not allow her to change her opinion over time, e.g., if the IGC condition is not satisfied.

Another branch of the literature on learning in social networks considers that, in addition

to observing signals, the agents are able to observe their neighbors’ past payoffs or past actions.

An important contribution within these models of observational learning is the work of Bala

and Goyal (1998), in which the agents take repeated actions and can observe their neighbors’

payoffs. They obtain consensus within connected components of the network since each agent

can observe whether her neighbors are earning payoffs different from her own. In addition,

Acemoglu, Dahleh, Lobel, and Ozdaglar (2011) consider that agents can observe their neighbors’

past actions and focus on studying asymptotic learning, defined as the convergence of the agents’

actions to the right action as the social network becomes large. They provide conditions on the

expansion of the network under which there is asymptotic learning when private beliefs are

either bounded or unbounded.

Finally, we note that existing models on communication and learning, based on Bayesian
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and non-Bayesian updating rules, typically lead to consensus when communication takes place

over a strongly connected network (e.g., Acemoglu, Dahleh, Lobel and Ozdaglar, 2008; Bala

and Goyal, 1998; DeMarzo, Vayanos and Zwiebel, 2003, Golub and Jackson, 2004; Acemoglu,

Ozdaglar and ParandehGheibi, 2009). A strongly connected network need not satisfy condition

IGC in our model, which could preclude consensus. This difference is explained by the fact

that, in our set up, the information contained in the messages does not flow in any period

through indirect connections in the network. This observation is important since it shows that

restricting communication to flow over time only locally in the social network (i.e., within each

pair of directly connected neighbors) interferes with the spread of information so as to prevent

consensus. Nevertheless, the IGC condition seems relevant to identify influential agents in the

presence of restrictions for the transmission of information through indirect connections in the

network.

The rest of the paper is organized as follows. Section 2 presents the model, Section 3 analyses

the achievement of consensus and correct limiting beliefs in the society, and Section 4 concludes

with a discussion of the results and of possible extensions. The proofs of the propositions and

of the lemmas are grouped together in the Appendix.

2 The Model

For any set X, ∆(X) denotes the set of all Borel probability measures on X.

2.1 Information Structure

Time is discrete and indexed by t = 0, 1, 2, . . . . There is a finite set of agents N := {1, 2, . . . , n},
with n ≥ 3, who are connected through an exogenous directed social network. The agents care

about a parameter θ ∈ Θ :=
{
θ, θ
}

, which is selected by nature before period zero. Each agent

i has a (subjective) prior distribution pi ∈ ∆(Θ) that describes her ex-ante beliefs about the

parameter. We assume that pi(θ) ∈ (0, 1) for each i ∈ N . The realized parameter θ is not

observed directly by any agent. Instead, in each period t, each agent i observes privately a

signal realization s ∈ S := {s, s} and receives privately a message realization m ∈M := {m,m}
from each agent j ∈ N . When convenient, we will use further notation to provide more details

about signals and messages. Specifically, we will sometimes find useful to use sit to denote the

signal received by agent i in period t and to use mijt to denote the message received by agent i

from agent j in period t. Also, when no reference need be made to time periods, we will simply

use si and mij , respectively.

As it will be explained in more detail below, a message received from some agent in some

period t conveys information only about the private signal that such an agent observes at t. In

principle, we allow each agent to receive messages from herself as well. However, since an agent
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already observes her own signals, the information conveyed by such messages is redundant. Also,

even though an agent receives messages from all agents, the social network restricts the amount

of information that she receives from such messages. The constraints that the network imposes

on the information that the agents receive from others are described more precisely in the next

subsection. A message vector received by agent i in period t is denoted by mit := (mijt)j∈N ∈
Mn, a message profile in period t is denoted by mt := (mit)i∈N ∈Mn2

, and a signal profile in

period t is denoted by st := (sit)i∈N ∈ Sn.

Both the signal profile st and the message profile mt are independent and identically dis-

tributed across periods, conditional on the parameter. For each period t, the distribution over

signals, conditional on the parameter value, observed by agent i is denoted by φi(· | θ). We use φi

to denote the corresponding unconditional distribution over signals. Also, for each pair of agents

i and j, and for each period t, the distribution over messages observed by agent i, conditional

on the signal realization observed by agent j, is denoted by σij(· | s). We use σij to denote the

corresponding unconditional distribution over messages.

An informative signal (associated with an external source) for agent i is a pair of conditional

distributions over signals Φi := {φi(· | θ) ∈ ∆(S) : θ ∈ Θ}. An informative message4 from agent

j to agent i (associated with the direct directed connection from agent i to agent j in the

network) is a pair of conditional distributions over messages Σij := {σij(· | s) ∈ ∆(M) : s ∈ S}.
Each Σij is exogenously given and constant across periods.5

An informative message Σij allows agent i to update her beliefs about θ by observing the

sequence of messages that she receives from agent j. The distribution over the messages received

by agent i from agent j, conditional on the parameter value, is denoted by ψij(· | θ). We use ψij

to denote the corresponding unconditional distribution. A (direct) directed link from agent i to

agent j is a pair of conditional distributions over messages Ψij := {ψij(· | θ) ∈ ∆(M) : θ ∈ Θ}.
Thus, each agent learns about the value of the parameter θ not only by observing her own

sequence of signals but also by obtaining some information about the signals observed by the

agents to whom she has a directed link. One way to interpret communication in this model is by

considering that each agent i listens, with some exogenous and fixed degree of informativeness,

to the opinions about θ that each other agent forms from her own private signals.

Of course, for any two agents i, j ∈ N , Ψij , Σij , and Φj are related through a consistency

4Note that we use the terms informative signal and informative message to refer to sets of conditional distri-
butions while signals and messages are realizations of the corresponding random variables.

5Modeling communication between pair of agents connected in a network by means of a sender-receiver protocol
has been recently considered, among others, by Hagenbach and Koessler (2010). Nevertheless, in contrast with
a typical sender-receiver game, in our model an agent is not able to choose the amount of information that
she reveals. Instead, information transmission from agent j to agent i is exogenously given by the degree of
informativeness of Σij .
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requirement imposed by the total probability rule. Specifically,

ψij(m | θ) =
∑
s∈S

σij(m|s)φj(s|θ), ∀θ ∈ Θ, ∀m ∈M. (1)

We introduce now some information theory concepts that will be useful to analyze the trans-

mission of information in our model. We begin with the definition of entropy of a distribution.

Definition 1. Let X be a finite set. The entropy (or Shannon entropy) of a probability

distribution P ∈ ∆(X) is

H(P ) := −
∑
x∈X

P (x) logP (x).

The (Shannon) entropy of a distribution is always nonnegative and measures the average

information content one is missing from the fact that the true realization of the associated

random variable is unknown. In our model, the entropy of the agents’ priors will provide us

with an upper bound on the degree of informativeness of the sets of informative signals and

informative messages available to any agent.

To measure how informative are signals and messages, we rely on the concept of relative

entropy between distributions.

Definition 2. Let X be a finite set and let P,Q ∈ ∆(X). The relative entropy (or Kullback-

Leiber distance) of P with respect to Q is

D(P ||Q) :=
∑
x∈X

P (x) log
P (x)

Q(x)
.

The relative entropy is not a metric,6 but, considering X as a sample space, it provides us

with a useful measure of the gain of information in moving from Q to P . The relative entropy

is always nonnegative and equals zero if and only if P = Q almost everywhere.

We apply the relative entropy to the agents’ posteriors with respect to their priors. We

consider only a single-period Bayesian revision process.7 Take an agent i ∈ N and suppose that

she receives information about the parameter only from her private source in the form of the

informative signal Φi. For a one-period revision process, let pi(· | s) denote agent i’s posteriors

about θ upon observing signal s (i.e., these are posteriors obtained solely from the information

that the agent receives from her external source). Thus, using Bayes’ rule, we have

pi(θ | s) =
φi(s|θ)pi(θ)∑

θ′∈Θ φi(s|θ′)pi(θ′)
∀θ ∈ Θ, ∀s ∈ S.

We define the power of the informative signal Φi as the expectation of the relative entropy of

the (one-period) posterior with respect to the prior.

6In particular, the relative entropy is not symmetric and does not satisfy the triangle inequality either.
7Recall that the distributions over signals and messages are constant over time.
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Definition 3 (Power of the informative signal).

P(Φi) :=
∑
s∈S

φi(s)D
(
pi(· | s) || pi

)
. (2)

The power measure allows us to rank completely any set of informative signals according to

their degree of informativeness so that Φi is at least as informative as Φ′i whenever P(Φi) ≥ P(Φ′i).

Analogously, suppose that agent i receives information about the parameter only from the private

messages sent by another agent j, in the form of the directed link Ψij . For a one-period revision

process, let qij(· |m) denote agent i’s posteriors about θ upon receiving message m from agent j

(i.e., these are posteriors obtained solely from the information that agent i receives from agent

j in the network). Then, using Bayes’ rule, we have

qij(θ |m) =
ψij(m|θ)pi(θ)∑

θ′∈Θ ψij(m|θ′)pi(θ′)
∀θ ∈ Θ, ∀m ∈M.

We define the power of the directed link Ψij as the expectation of the relative entropy of the

(one-period) posterior with respect to the prior.

Definition 4 (Power of the directed link).

P(Ψij) :=
∑
m∈M

ψij(m)D
(
qij(· |m) || pi

)
. (3)

We note that the informativeness of the directed link from agent i to agent j does not

exceed the informativeness of agent j’s own signals. In other words, suppose that agent i is

allowed to use agent j’s private signal to update her beliefs about the parameter. Then, the

information about θ that agent i receives through her directed link to agent j is naturally less

precise than the information that she obtains using directly agent j’s signal. Thus, our model

captures the presence of some (exogenous) decay in the transmission of information, which is

associated to informative messages that do not fully transmit the private information available

to the sender. When the informative message Σij is such that agent i fully learns the signal

that agent j observes, then, using such a directed link, agent i learns as much as agent j about

the parameter. Only in this case there is no loss of information through the link. The following

Lemma provides this intuitive result in terms of the power measure.

Lemma 1 (Decay in the Transmission of Information). Suppose that agents i, j ∈ N use

the same informative signal Φ to obtain information about θ. Then, P(Ψij) ≤ P(Φ) for each

directed link Ψij. Moreover, P(Ψij) = P(Φ) if and only if the informative message Σij associated

with the directed link Ψij is such that agent i fully learns the signals observed by agent j from

the external source associated with Φ.
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It can be verified that, for each i ∈ N , P(Φi) = H(pi)−
∑

s∈S φi(s)H(pi(·|s)) so that P(Φi) ≤
H(pi). In addition, we have that P(Φi) = H(pi) if and only if the average entropy of agent i’s

posteriors (obtained only from her private source) vanishes. In other words, P(Φi) = H(pi)

whenever agent i obtains full information about the parameter from her private signal. Note

that for agent i to obtain full information about the parameter from her directed link to another

agent j, it must be the case that (a) agent i obtains full information about agent j’s informative

signal (i.e., P(Ψij) = P(Φj) ) and (b) agent j obtains full information about the parameter from

her own informative signal (i.e., P(Φj) = H(pj) ). Therefore, from the result in Lemma 1, we

observe that maxi∈N H(pi) imposes an upper bound on the degree of informativeness about θ

that any agent in the society can obtain, regardless of the network structure.

2.2 Communication through the Network

The power measure allows us to rank completely any set of directed links according to their

degree of informativeness so that Ψij is at least as informative as Ψ′ij whenever P(Ψij) ≥ P(Ψ′ij).

Using this, we identify the weight of the directed link from agent i to agent j with the power

P(Ψij) of such a link. Notice that P(Ψij) = 0 if and only if agent i learns nothing about the

parameter from the informative message received from agent j. We interpret this as agent i not

listening to the opinions of agent j about parameter θ and model this situation as agent i not

having a directed link to agent j (or, in other words, as having a directed link with zero weight).

On the opposite extreme, it follows from Lemma 1 that P(Ψij) ≤ P(Φ̂) := maxi∈N P(Φi). Then,

using the power measure, we define a directed weighted network as an n × n matrix of weights

P(Ψ) :=
[
P(Ψij)

]
, where 0 ≤ P(Ψij) ≤ P(Φ̂) indicates the weight of the directed link from agent

i to agent j. We set P(Ψii) = P(Φi) for each i ∈ N so that an agent transmits full information

to herself. As mentioned earlier, this information is redundant since agent i already observes

her own signals.

Agents can also be connected through indirect connections in a network. Nevertheless,

we assume in this paper that information cannot be transmitted through indirect connec-

tions. Thus, each agent can hear only to the opinions of the agents to whom she has a di-

rect (directed) link. A directed path from agent i1 to agent iK is a sequence of directed links

γi1iK := (Ψi1i2 ,Ψi2i3 , . . . ,ΨiK−1iK ) such that P(Ψik−1ik) > 0 for each k ∈ {2, . . . ,K}. A weighted

network P(Ψ) is strongly connected if there is a directed path from any agent to any other agent.

2.3 Evolution of Beliefs, Consensus, and Correct Beliefs

We introduce a few additional concepts which are useful to analyze the evolution of the agents’

beliefs. A period-t history for agent i is a sequence hit := ((si0,mi0), (si1,mi1), . . . , (sit,mit)) ∈
(S ×Mn)t of signals and message vectors. The posterior belief of agent i about parameter θ
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in each period t is given by the random variable µi(θ |hit) : Ω → [0, 1]. For each agent i and

each value of the parameter θ, the sequence of random variables {µi(θ |hit)}∞t=0 is a bounded

martingale,8 which ensures that the agents’ posterior beliefs converge almost surely (see, e.g.,

Billingsley, 1995, Theorem 35.5).

Definition 5. A consensus is (asymptotically) reached in the society if the posterior beliefs of

all agents converge to the same value regardless of their priors, that is, if for each i ∈ N , each

pi ∈ ∆(Θ), and each θ ∈ Θ,

lim
t→∞

µi(θ |hit) = p,

for some p ∈ [0, 1].

Our notion of what constitutes correct beliefs requires that the network permits the aggre-

gation of the pieces of information transmitted by the private signals available to the agents.

Consider an external observer who can access to the external sources available to all agents in

the society. The observer’s priors are given by a distribution p ∈ ∆(Θ). A period-t history for

the external observer is a sequence ht := (s0, s1, . . . , st) ∈ (Sn)t of signal profiles. The posterior

belief of the external observer about parameter θ in each period t is given by the random vari-

able µob(θ |ht) : Ω → [0, 1]. Again, for each value of the parameter θ, the sequence of random

variables {µob(θ |ht)}∞t=0 is a bounded martingale so that the external observer’s posteriors con-

verge almost surely. With these preliminaries in hand, correct limiting beliefs require that the

communication processes allowed by the network structure aggregate the diverse information

obtained by the agents (from their external sources), exactly such as the external observer does.

For large enough societies, the observer’s limiting beliefs are arbitrarily accurate estimates of

the true parameter value.

Definition 6. The directed network P(Ψ) attains correct limiting beliefs if a consensus is

achieved in the society and, in addition, for each i ∈ N , and each θ ∈ Θ,

lim
t→∞

µi(θ |hit) = lim
t→∞

µob(θ |ht).

3 Results

3.1 Characterizing Limiting Beliefs

Given a value θ ∈ Θ of the parameter, we will use from here onwards θ′ to denote the other value

of the parameter, i.e., {θ′} := Θ \ {θ}. We use the relative entropies between the conditional

distributions over both signals and messages to construct a set of measures that will be useful

8More formally, {µi(θ |hit)}∞t=0 is a bounded martingale with respect to the measure on Ω, conditional on θ,
induced by the priors (pi)i∈N , and the conditional distributions φi(· | θ), ψij(· | θ), i, j ∈ N .

13



to study the convergence of the agents’ posteriors. For an agent i ∈ N , let

Gi(θ||θ′) := pi(θ)D
(
φi(·|θ) ||φi(·|θ′)

)
. (4)

Also, for a pair of agents i, j ∈ N , let

Fij(θ||θ′) := pi(θ)D
(
ψij(·|θ) ||ψij(·|θ′)

)
. (5)

Intuitively, Gi(θ||θ′) measures the weight that agent i’s private signal puts on i’s posteriors (after

a one-period revision) that θ is the true parameter instead of θ′. Analogously, Fij(θ||θ′) measures

the weight that the information transmitted from agent j to agent i puts on i’s posteriors (for a

one-period revision) that θ is the true parameter instead of θ′. Then, using the set of measures

Gi and Fij (j 6= i), we propose a measure of the weight that both the private signal and the

information received from her neighbors put on an agent’s posteriors that the true parameter is

a given value (against the alternative value).

Definition 7. For a directed network P(Ψ), the influence measure for agent i of parameter

value θ with respect to parameter value θ′ is

ξi(θ||θ′) := Gi(θ||θ′) +
∑
j 6=i

Fij(θ||θ′).

Note that both influence measures ξi(θ||θ) and ξi(θ||θ) are nonnegative. The next proposition

shows that the convergence of an agent’s posteriors is characterized by the aggregation of the

weights that her private signal and all her directed links place on a given parameter value being

the true parameter. This aggregation of influences can be neatly expressed in terms of the

influence measure defined above.

Proposition 1. For a given weighted network P(Ψ) and for any sequence of histories {hit}∞t=0,

agent i’s limiting beliefs satisfy (i) limt→∞ µi(θ|hit) = 1 if and only if ξi(θ||θ′) > ξi(θ
′||θ) and

(ii) limt→∞ µi(θ|hit) = pi(θ) if and only if ξi(θ||θ′) = ξi(θ
′||θ).

How do the levels of informativeness of signals and of directed links relate with the agents’

limiting beliefs? What is the influence of the agents’ priors on their limiting beliefs? The

following lemma establishes useful relationships between the power of both informative signals

and directed links in the network, on the one hand, and the measures Gi and Fij that characterize

the evolution of the agents’ beliefs, on the other hand.

Lemma 2. For each set of informative signals {Φi}i∈N and each weighted network P(Ψ),

(i) P(Φi)−Gi(θ′||θ) ≤ pi(θ′)
[
Gi(θ||θ′)−Gi(θ′||θ)

]
;

(ii) P(Ψij)− Fij(θ′||θ) ≤ pi(θ′)
[
Fij(θ||θ′)− Fij(θ′||θ)

]
for each j 6= i.
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Take a given agent i ∈ N . By combining the results (i) and (ii) of Lemma 2 above with the

definition of influence measure in Definition 1, we obtain

0 ≤ P(Φi) +
∑
j 6=i

P(Ψij) ≤ pi(θ′)
[
ξi(θ||θ′)− ξi(θ′||θ)

]
+ ξi(θ

′||θ), (6)

which, in turn, can be rewritten as

0 ≤ P(Φi) +
∑
j 6=i

P(Ψij) ≤ pi(θ′)ξi(θ||θ′) + pi(θ)ξi(θ
′||θ). (7)

Note that the inequalities in (6) and (7) above specify, in different terms, an upper bound

on the aggregate level of informativeness that agent i obtains from the external source and

from her links in the network. Interestingly enough, such an upper bound is related with the

influence measures that characterize the convergence of the agent’s posteriors. Suppose for

instance that, for the given agent i, limt→∞ µi(θ|hit) = 1 so that ξi(θ||θ) > ξi(θ||θ). Then, from

the expression in (6), we observe that pi(θ)
[
ξi(θ||θ) − ξi(θ||θ)

]
+ ξi(θ||θ) > 0 imposes an upper

bound on agent i’s aggregate level of informativeness. In this case, other things equal, lower

values of pi(θ) requires lower levels of aggregate informativeness for agent i to attain limiting

posteriors that put probability one to θ being the true parameter value. This conveys the

intuitive message that, in order to end up believing that a certain parameter value is the true

one, the agent requires less precise channels of information when her priors put low probability

to the alternative value. In addition, the inequality in (7) reflects that, in order to restrict

the size of the required aggregate level of informativeness for the agent, priors and influence

measures interact in opposite directions. This is also intuitive. Observe that a situation with a

low prior on a given parameter value θ and a high influence measure that favors the alternative

parameter value θ′ both increase the required upper bound. As a consequence, in this situation,

high levels of aggregate informativeness for the agent are compatible with limiting beliefs that

put probability one to the parameter value θ.

3.2 A Necessary Condition for Consensus

The achievement of consensus in the society requires that the evolution of some agents’ pos-

teriors can be substantially influenced from their communication with other agents. Roughly

speaking, consensus requires that some agents change their minds over time by listening to other

agents. From our results in Proposition 1, we observe that the measures Fij(θ||θ) and Fij(θ||θ)
formalize in our model the extent to which agent i’s posteriors are affected in the long run by

the information that agent i receives from agent j.

It is useful for our analysis to consider first a benchmark case where each agent is isolated

and receives no information from any of the other agents. Let P(Ψ̂) denote the directed network
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specified as

P(Ψ̂) :=


P(Φ1) 0 . . . 0

0 P(Φ2) . . . 0
...

...
. . .

...
0 0 . . . P(Φn)

 .

The network P(Ψ̂) describes a situation where each directed link has a zero weight so that there

is no communication among the agents. In this case, the evolution of each agent’s posteriors

is determined solely by the information that she receives from her source. For the network

P(Ψ̂), application of Proposition 1 implies that limt→∞ µi(θ|hit) = 1 if and only if Gi(θ||θ′) >
Gi(θ

′||θ). Then, for the case in which there is no communication among the agents, the set

N(θ) := {i ∈ N : Gi(θ||θ′) > Gi(θ
′||θ)} gives us the set of agents whose limiting posteriors put

probability one to θ being the true parameter value.

For simplicity, we assume that each agent’s private signal is such that, for the case in which

there is no communication among the agents, her posteriors converge so as to put probability one

to either θ or θ. Specifically, we assume that there is no agent i such that Gi(θ||θ′) = Gi(θ
′||θ)

so that N = N(θ) ∪ N(θ). In other words, we ignore situations in which an agent’s posteriors

evolve in a way such that she finally ends up with her own initial priors. While this assumption

is useful for presentation purposes, it plays no relevant role in the mechanisms that governs the

model.9 In addition, to make the problem interesting, we assume that N(θ) 6= ∅ and N(θ) 6= ∅.
Thus, for the benchmark case without communication, we are splitting the society into two

nonempty sets of agents, those whose long run posteriors favor θ, N(θ), and those whose long

run posteriors favor of θ, N(θ).

We identify in the corollary below a key necessary condition for consensus in the society.

Consensus requires that each of the agents who would favor a given parameter value, had she

received no information from others, has a directed link to at least one agent whose information is

able to change the evolution of her posteriors over time so as to eventually put probability one on

the alternative value being the true one. We label this condition as Inter Group Connectedness

(IGC).

Definition 8. The directed network P(Ψ) satisfies Inter Group Connectedness (IGC) if either

(i) each agent i ∈ N(θ) has a directed link to at least one agent j such that Fij(θ||θ) > Fij(θ||θ),
or (ii) each agent from k ∈ N(θ) has a directed link to at least one agent from l such that

Fkl(θ||θ) > Fkl(θ||θ), or both.

Corollary 1. Suppose that a consensus is reached in a society described by a directed network

P(Ψ). Then, the network P(Ψ) necessarily satisfies IGC.

9Using standard genericity arguments, it can be shown that this assumption is generically satisfied for societies
with a finite number of agents.
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The corollary above follows directly from Proposition 1. Consider a directed network P(Ψ)

which does not satisfy IGC. Then, there is some agent i ∈ N(θ) who does not have a directed link

to any agent j such that Fij(θ||θ) > Fij(θ||θ). Also, there is some agent k ∈ N(θ) who does not

have a directed link to any agent l such that Fkl(θ||θ) > Fkl(θ||θ) As a consequence, ξi(θ||θ) >
ξi(θ||θ) and ξk(θ||θ) > ξk(θ||θ). From Proposition 1, it follows that limt→∞ µi(θ |hit) = 1 while

limt→∞ µk(θ |hkt) = 1 so that a consensus is not attained.

In short, the achievement of consensus is closely related to the presence of prominent agents

in the society. Through the links directed to them, these agents must have the ability to change

the way in which some their listeners’ beliefs evolve.

We end this subsection by noting that a strongly connected network need not satisfy the

IGC condition. This is simply due to the fact that we assume that information cannot be

transmitted through indirect connections in the network. Thus, we can have a strongly network

in which some agent i is connected to another agent j only through a directed (indirect) path

γij = (Ψii1 ,Ψi1i2 , . . . ,ΨiK−1j). The path γij does not allow agent i’s posteriors to be affected

by any information available to agent j. Consequently, agent i may end up with posteriors

different from agent j’s limiting posteriors. In other words, a consensus may not be attained in

a strongly connected network. This implication contrasts with the existing results in most of

the related literature. Yet, we emphasize that this result is directly driven in the present paper

by the assumption that information does not flow through indirect connections in any period.

3.3 Correct Limiting Beliefs and Influence of Prominent Agents

The next proposition characterizes the external observer’s limiting beliefs. Recall that we assume

that the external observer has access to the private sources available to all agents in the society.

In this sense, the observer’s posteriors constitute our aggregate of the information possessed by

the agents. Our framework for studying the correctness of beliefs considers that the observer’s

beliefs do not depend on any particular network structure. Not surprisingly, the aggregation of

the measures Gi(θ||θ′) across all agents play a key role in the observer’s limiting beliefs.

Proposition 2. For any sequence of histories {ht}∞t=0, the external observer’s limiting be-

liefs satisfy (i) limt→∞ µob(θ|ht) = 1 if and only if
∑

i∈N Gi(θ||θ′) >
∑

i∈N Gi(θ
′||θ) and (ii)

limt→∞ µob(θ|ht) = p(θ) if and only if
∑

i∈N Gi(θ||θ′) =
∑

i∈N Gi(θ
′||θ).

The next proposition provides a sufficient condition on the levels of informativeness associ-

ated with the links of the network under which correct limiting beliefs are attained in the society.

Recall that the achievement of a consensus in the society is a prerequisite to evaluate whether

correct beliefs are attained.
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Proposition 3. Consider a directed network P(Ψ) and suppose that a consensus is reached in

the society so that, for each i ∈ N , we have limt→∞ µi(θ|hit) = 1 for some parameter value θ.

If the following condition is satisfied∑
i∈N

∑
j 6=i

[
Fij(θ

′||θ)− Fij(θ||θ′)
]
> 0,

with {θ′} := Θ \ {θ}, then the directed network P(Ψ) attains correct limiting beliefs in which

limt→∞ µob(θ|ht) = 1.

The sufficient condition identified in Proposition 3 is intuitive. Suppose that the aggregation

of the pieces of information obtained from the private sources of all the agents leads one to believe

in the long run that a given parameter value θ is the true one. Then, the condition above imposes

some restrictions on the influence of prominent agents. It requires that there is no agent whose

influence on others be such that some agents’ limiting posteriors favor the alternative parameter

value θ′. The message conveyed by this result is reminiscent of the main results obtained

by Golub and Jackson (2010) in their work without Bayesian updating (Propositions 2 and

3). Although they use a notion of correct beliefs that differs from the one proposed here,10

correctness of beliefs requires in their model that the influence of prominent agents vanish as

the size of the society grows. In our setting, as well as in theirs, a disproportionate popularity

by some agent(s) is the crucial obstacle to correct limiting beliefs.

From our results, we observe that the presence of prominent agents is desirable to achieve

consensus. Yet, the influence of the prominent agents must not be too high so as to change

the agents’ beliefs in the opposite direction with respect to what one learns by aggregating the

agents’ private sources of information.

4 Concluding Comments

We have assumed that there are only two possible values of the parameter. Nevertheless, the

intuition underlying the results in Corollary 1 and in Proposition 3 is compelling and general.

With finitely many parameter values, the IGC condition would generalize by requiring that each

agent who would favor a given parameter value, had she received no information from others,

has a connection with some given prominent agent who is able to change the evolution of her

beliefs over time so as to end up favoring the same parameter value favored by the prominent

agent. With more that two parameter values, the achievement of consensus is closely related to

the presence of at least one prominent agent who favors in the long run a given parameter value.

10Their definition of correct beliefs requires that some external observer aggregates the pieces of information
initial held by the agents, as we do. However, in contrast with our notion of correct beliefs, they also consider
that the size of the society grows arbitrarily so that their definition is based on an asymptotic criteria as the
number of agents tends to infinity.
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In addition, this prominent agent must be able to spread her opinion to all agents in the society.

Of course, this can be achieved also under the presence of several prominent agents, provided

that they favor in the long run a common parameter value. If a consensus is achieved with more

than two parameter values, then the agents’ limiting beliefs will aggregate the decentralized

sources of private information only if there is no prominent agent who favors in the long run a

different parameter value and whose influence is too large. We would require that the influence

of such a prominent agent be not so large so as to deviate the agents’ limiting posteriors from

the ones which obey to the aggregation of the information initially held by all the agents. In this

sense, the message conveyed by Proposition 3 continues to hold with more that two parameter

values.

As we discussed in the Introduction, our notion of correctness of beliefs is more compelling

when one focuses on societies large enough. For small societies, using a definition of correct be-

liefs based on conditioning posteriors on a given parameter value would deliver the message that

the agents always learn the truth. Nevertheless, for the approach usually pursued in the learn-

ing literature, recent research (e.g., Parikh and Krasucki, 1990; Heifetz, 1996; Koessler, 2001;

Steiner and Stewart, 2010) shows that the presence of communication among the agents may in

some cases preclude common learning of the parameter. In particular, Cripps, Ely, Mailath, and

Samuelson (2012) show that common learning is precluded when the messages that the agents

receive are correlated across time. The present paper considers that messages are independent

over time. Analyzing consensus and the evolution of correct beliefs for small societies when

messages follow time dependence patterns remains and interesting an open question.

Another interesting extension of the model would be that of endogenizing the listening

behavior. To follow this approach, more structure should be added to the model so as to

consider that the agents pursue the maximization of a payoff that depends on the unknown

parameter. Then, by characterizing listening structures that are “stable,” one could obtain

some insights into the formation of communication networks in a dynamic framework of belief

evolution.

Finally, the assumption that messages are not transmitted through indirect connections

seems more realistic in some environments than in others. For example, it is a natural as-

sumption in networks within formal organizations where regulation restricts the transmission

of information to indirectly connected members. This would be also the case in networks with

physical restrictions to the flow of indirect information. This assumption, however, is less com-

pelling in informal networks. It would be interesting to analyze the achievement of consensus

and correct beliefs when this assumption is relaxed and some amount of information is allowed

to flow through indirect connections.
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Appendix

Proof of Lemma 1. Take two agents i, j ∈ N , and consider a directed link Ψij from agent i to

agent j. Suppose that agents i and j have the same informative signal Φ. Using the definition

of power of a directed link in (3) and the relation between Ψij and Σij given by the consistency

requirement in (1), we obtain

P(Ψij) =
∑
m∈M

ψij(m)D
(
qij(·|m) || pi

)
=
∑
m∈M

ψij(m)
∑
θ∈Θ

qij(θ|m) log
qij(θ |m)

pi(θ)

=
∑
m∈M

ψij(m)
∑
θ∈Θ

ψij(m|θ)pi(θ)
ψij(m)

log
ψij(m|θ)
ψij(m)

=
∑
θ∈Θ

∑
m∈M

pi(θ)
∑
s∈S

σij(m|s)φ(s|θ) log

∑
s′∈S σij(m|s′)φ(s′|θ)∑
s′∈S σij(m|s′)φ(s′)

.

Also, using the definition of power of an informative signal in (2), we have

P(Φ) =
∑
s∈S

φ(s)D
(
pi(·|s) || pi

)
=
∑
s∈S

φ(s)
∑
θ∈Θ

pi(θ|s) log
pi(θ|s)
pi(θ)

=
∑
s∈S

φ(s)
∑
θ∈Θ

φ(s|θ)pi(θ)
φ(s)

log
φ(s|θ)
φ(s)

=
∑
θ∈Θ

∑
s∈S

φ(s|θ)pi(θ) log
φ(s|θ)
φ(s)

[ ∑
m∈M

σij(m|s)
]
.

By combining the two above expressions, it follows that

P(Ψij) = P(Φ) +
∑
θ∈Θ

pi(θ)
∑
m∈M

∑
s∈S

σij(m|s)φ(s|θ) log
φ(s)

∑
s′∈S σij(m|s′)φ(s′|θ)

φ(s|θ)
∑

s′∈S σij(m|s′)φ(s′)
(8)

Furthermore, since log x is a strictly concave function, from the expression above we have

P(Ψij) ≤ P(Φ) +
∑
θ∈Θ

pi(θ) log
∑
m∈M

∑
s∈S

σij(m|s)φ(s|θ)
φ(s)

∑
s′∈S σij(m|s′)φ(s′|θ)

φ(s|θ)
∑

s′∈S σij(m|s′)φ(s′)
. (9)

Now, notice that, for each given θ ∈ Θ,

log
∑
m∈M

∑
s∈S

σij(m|s)φ(s|θ)
φ(s)

∑
s′∈S σij(m|s′)φ(s′|θ)

φ(s|θ)
∑

s′∈S σij(m|s′)φ(s′)

= log
∑
m∈M

[∑
s∈S σij(m|s)φ(s)

][∑
s′∈S σij(m|s′)φ(s′|θ)

]∑
s′∈S σij(m|s′)φ(s′)

= log
∑
m∈M

∑
s′∈S

σij(m|s′)φ(s′|θ) = log 1 = 0.
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Therefore, from the inequality in (9), we obtain P(Ψij) ≤ P(Φ), as stated.

Moreover, note that the informative message Σij , associated with the directed link Ψij , allows

agent i to learn fully the signal that agent j observes if and only if Σij completely separates the

two signal realizations s and s available to agent j. Without loss of generality, this is achieved

if and only if σij(m|s) = σij(m|s) = 1. In this case, for each θ ∈ Θ, we have

∑
m∈M

∑
s∈S

σij(m|s)φ(s|θ) log
φ(s)

∑
s′∈S σij(m|s′)φ(s′|θ)

φ(s|θ)
∑

s′∈S σij(m|s′)φ(s′)

= φ(s|θ) log
φ(s)φ(s|θ)
φ(s|θ)φ(s)

+ φ(s|θ) log
φ(s)φ(s|θ)
φ(s|θ)φ(s)

= 0.

Therefore, from the expression in (8), we obtain that the informative message Σij allows agent

i to fully learn about the signal observed by agent j if and only if P(Ψij) = P(Φ).

Proof of Proposition 1. For a history hit, let α(s;hit) be the number of periods in which agent i

has observed signal s before period t and let β(mij ;hit) be the number of periods in which agent

i has received message mij from agent j before period t. Fix a sequence of histories {hit}∞t=0.

Take a given θ ∈ Θ and set {θ′} := Θ \ {θ}. Application of Bayes rule gives

µi(θ|hit) =

1 +
pi(θ

′)

pi(θ)

∏
s

[
φi(s|θ′)
φi(s|θ)

]α(s;hit)∏
j 6=i

∏
mij

[
ψij(mij |θ′)
ψij(mij |θ)

]β(mij ;hit)
−1

.

Since observed frequencies approximate distributions, i.e., limt→∞ α(s;hit) = limt→∞[t φi(s)]

and limt→∞ β(mij ;hit) = limt→∞[t ψij(mij)], we have

lim
t→∞

µi(θ|hit) = lim
t→∞

1 +
pi(θ

′)

pi(θ)

∏
s

[
φi(s|θ′)
φi(s|θ)

]φi(s)∏
j 6=i

∏
mij

[
ψij(mij |θ′)
ψij(mij |θ)

]ψij(mij)
t−1

.

Therefore, studying the converge of µi(θ|hit) reduces to studying whether the term

∏
s

[
φi(s|θ′)
φi(s|θ)

]φi(s)∏
j 6=i

∏
mij

[
ψij(mij |θ′)
ψij(mij |θ)

]ψij(mij)

exceeds or not one. By taking logs, this is equivalent to studying whether∑
s

φi(s) log
φi(s|θ′)
φi(s|θ)

+
∑
j 6=i

∑
mij

ψij(mij) log
ψij(mij |θ′)
ψij(mij |θ)

exceeds or not zero. Then, since φi(s) =
∑

θ pi(θ)φi(s|θ) and ψij(mij) =
∑

θ pi(θ)ψij(mij |θ), we

can use the definitions of the measures Gi and Fij in (4) and (5), respectively, to obtain that (i)

limt→∞ µi(θ|hit) = 1 if and only if Gi(θ||θ′)+
∑

j 6=i Fij(θ||θ′) > Gi(θ
′||θ)+

∑
j 6=i Fij(θ

′||θ) and (ii)

limt→∞ µi(θ|hit) = pi(θ) if and only if Gi(θ||θ′) +
∑

j 6=i Fij(θ||θ′) = Gi(θ
′||θ) +

∑
j 6=i Fij(θ

′||θ),
as stated.
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Proof of Lemma 2. (i) Consider a set of informative signals {Φi}i∈N and a weighted network

P(Ψ). Fix a given agent i ∈ N . Without loss of generality, take θ = θ so that θ′ = θ. From the

definitions of power of an informative signal in (2) and of measure Gi in (4), we know that

P(Φi)−
[
Gi(θ||θ)−Gi(θ||θ)

]
=
∑
θ

∑
s

pi(θ)φi(s|θ) log
φi(s|θ)
φi(s)

− pi(θ)
∑
s

φi(s|θ) log
φi(s|θ)
φi(s|θ)

+ pi(θ)
∑
s

φi(s|θ) log
φi(s|θ)
φi(s|θ)

=
∑
θ

∑
s

pi(θ)φi(s|θ)
[
log

φi(s|θ)
φi(s|θ)

− log

∑
θ φi(s|θ)pi(θ)
φi(s|θ)

]

=
∑
θ

∑
s

pi(θ)φi(s|θ)
[
log

φi(s|θ)
φi(s|θ)

− log

(
pi(θ) + pi(θ)

φi(s|θ)
φi(s|θ)

)]
.

Since log x is a strictly concave function, it follows from the expression above that

P(Φi)−
[
Gi(θ||θ)−Gi(θ||θ)

]
≤
∑
θ

∑
s

pi(θ)φi(s|θ)
[
log

φi(s|θ)
φi(s|θ)

− pi(θ) log
φi(s|θ)
φi(s|θ)

]
. (10)

Furthermore, notice that the right-hand side of inequality (10) above can be rewritten as

∑
θ

∑
s

pi(θ)φi(s|θ)
[
log

φi(s|θ)
φi(s|θ)

− pi(θ) log
φi(s|θ)
φi(s|θ)

]
= pi(θ)

∑
s

φi(s|θ) log
φi(s|θ)
φi(s|θ)

− pi(θ)
∑
s

(∑
θ

pi(θ)φi(s|θ)

)
log

φi(s|θ)
φi(s|θ)

= pi(θ)D(φi(·|θ) ||φi(·|θ)) + pi(θ)
∑
s

(
pi(θ)φi(s|θ) + pi(θ)φi(s|θ)

)
log

φi(s|θ)
φi(s|θ)

= pi(θ)D(φi(·|θ) ||φi(·|θ)) + pi(θ)pi(θ)D(φi(·|θ) ||φi(·|θ))−
[
pi(θ)

]2
D(φi(·|θ) ||φi(·|θ)).

Therefore, from (10), we obtain

P(Φi)−
[
Gi(θ||θ)−Gi(θ||θ)

]
≤ Gi(θ||θ)− pi(θ)

[
Gi(θ||θ)−Gi(θ||θ)

]
⇔ P(Φi)−Gi(θ||θ) ≤ [1− pi(θ)]

[
Gi(θ||θ)− pi(θ)Gi(θ||θ)

]
= pi(θ)

[
Gi(θ||θ)− pi(θ)Gi(θ||θ)

]
,

as stated.

The proof of part (ii) can be done in a way totally analogous to the proof of part (i) above.

One only needs to replicate the arguments given above for P(Ψij) instead of P(Φi). The role

played byGi(θ||θ′) in the arguments above is now played, in a totally analogous way, by Fij(θ||θ′).
Therefore, we forego a formal statement.

Proof of Proposition 2. The proof is similar to the proof of Proposition 1. For a history ht, let

α(si;ht) be the number of periods in which the external observer has observed agent i’s signal si

before period t. Fix a sequence of histories {ht}∞t=0. Take a given θ ∈ Θ and set {θ′} := Θ \ {θ}.
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Application of Bayes rule gives

µob(θ|ht) =

(
1 +

p(θ′)

p(θ)

∏
i

∏
si

[
φi(si|θ′)
φi(si|θ)

]α(si;ht)
)−1

.

Since observed frequencies approximate distributions, i.e., limt→∞ α(si;ht) = limt→∞[t φi(si)],

we have

lim
t→∞

µob(θ|ht) = lim
t→∞

[
1 +

p(θ′)

p(θ)

(∏
i

∏
si

[
φi(si|θ′)
φi(si|θ)

]φi(si))t]−1

.

Therefore, upon taking logs, the converge of µob(θ|ht) is characterized by the fact that the term∑
i

∑
si

φi(si) log[φi(si|θ′)/φi(si|θ)] exceeds or not zero. Then, since φi(si) =
∑

θ pi(θ)φi(si|θ), we

can use the definitions of the measure Gi in (4), to obtain that (i) limt→∞ µob(θ|ht) = 1 if

and only if
∑

i∈N Gi(θ||θ′) >
∑

i∈N Gi(θ
′||θ) and (ii) limt→∞ µob(θ|ht) = p(θ) if and only if∑

i∈N Gi(θ||θ′) =
∑

i∈N Gi(θ
′||θ), as stated.

Proof of Proposition 3. Consider a network P(Ψ) and suppose that, for each agent i ∈ N ,

limt→∞ µi(θ|hit) = 1 for some given θ ∈ Θ. Then, Proposition 1 implies that

[Gi(θ||θ′)−Gi(θ′||θ)] +
∑
j 6=i

[Fij(θ||θ′)− Fij(θ′||θ)] > 0,

where {θ′} := Θ \ {θ}. Summing across all agents, we obtain that the condition∑
i∈N

[Gi(θ||θ′)−Gi(θ′||θ)] >
∑
i∈N

∑
j 6=i

[Fij(θ
′||θ)− Fij(θ||θ′)]

is satisfied if a consensus, in which all agents believe in the long run that θ is the true parameter

value, is achieved in the society. Therefore, if
∑

i∈N
∑

j 6=i[Fij(θ
′||θ)−Fij(θ||θ′)] > 0 holds, then

we obtain that
∑

i∈N Gi(θ||θ′) >
∑

i∈N Gi(θ
′||θ). In this case, by applying Proposition 2, it

follows that limt→∞ µob(θ|ht) = 1 so that correct limiting beliefs are attained in the society.
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