
Anticipating Future Expected Utility and Coordination Motives

for Information Decisions in Networks∗
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1 Introduction

Networks within groups or organizations serve as conduits that carry news, information, and

opinions about products, job vacancies and political programs: from our neighbors, friends, and

co-workers, we acquire information which helps us to improve our knowledge about uncertain

(payoff-relevant) variables. For example, researchers obtain information from their colleagues

to understand better certain scientific problems, unemployed agents request information from

their friends about job vacancies, and investors newly arrived to a sector acquire information

from more experienced investors to obtain accurate estimates of the sector profitability.

Information acquisition is ubiquitous within networked groups and yet little is known about

this phenomenon. How do agents interact with respect to their information acquisition deci-

sions when they are connected through a network? How is the compatibility between efficient

and equilibrium information acquisition related to the network architecture? To study these

questions, this paper provides a game theoretical framework that models the transmission of

information as a Bayesian belief revision process.

This model focuses on situations where each agent cares both about choosing an action

appropriate to the underlying state and about the suitability of the other agents’ actions to the

state. Thus, we are interested in situations in which we enjoy a positive externality from the fact

that other agents make correct decisions. This externality is clearly relevant in organizations

in which its members are engaged in a joint enterprise. In these situations, we benefit from

the performance or prestige of the entire organization: we naturally prefer to be members of

an organization which performs well and has good reputation. This reputation is often earned

because others make decisions which are appropriate to the underlying state. Theory suggests

that the productivity and wages of an organization increase with the performance of its members

in their tasks. For example, a branch of the literature on organization capital (e.g., Jovanovich,

1979; Prescott and Visscher, 1980; Becker, 1993) emphasizes the importance for the firm of

its employees matches to the assigned tasks. In this paper, we label this concern about our

colleagues’ performance as team concern. In addition, in contrast with the approach followed by

most of the related literature, we consider that, in principle, agents are not interested in matching

their own actions with the actions taken by others. More precisely, we consider situations in
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which there are no strategic interactions in actions.

Suppose that, before choosing actions, the agents can make some information decisions to

improve their knowledge of the state. For the class of preferences described above, our first

conjecture could be that there are no strategic reasons for us to care neither about other agents’

beliefs of the state nor about their information acquisition decisions. In fact, a standard game

theoretical approach to this sort of situations (using perfect Bayes-Nash equilibrium, or any

weaker or stronger concept) would conclude that strategic interactions in information decisions

are also absent (see, e.g., Hellwig and Veldkamp, 2009).

That conclusion, however, does not provide a satisfactory explanation of some well docu-

mented forms of interdependence in information decisions present in groups or organizations such

as collective denial or information avoidance. The theory of strategic information acquisition

with strategic interactions in actions (e.g., Morris and Shin, 2002; Angeletos and Pavan, 2007;

Calvó-Armengol and de Mart́ı, 2007; Hellwig and Veldkamp, 2009; Myatt and Wallace, 2010,

among many others) has provided important insights in several fields but does not rationalize

the contagion of beliefs observed in a variety of real-world situations in which there are no un-

derlying strategic interactions in actions. This form of interdependence of beliefs is viewed by a

large literature of social and organizational psychology as a factor which plays a relevant role in a

variety of phenomena such as market bubbles, political crises, investment and financial crashes,

and organization failures. For instance, analyzing political episodes such as the Bay of Pigs

invasion, the Cuban missile crisis and the escalation of the Vietnam war, Janis (1972) identified

a pattern of spread of beliefs unrelated to any interdependence of actions, which he coined with

the term “groupthink.” Among other features, organizational psychologists identify selection

bias in collecting information as a major symptom of groupthink.1 Also, economic historians

(e.g., Mackay, 1980; Kindleberger and Aliber, 2005; Shiller, 2005) account for many examples in

which “contagious delusions”, “manias”, and “financial folly” are important contributing factors

of financial crises.2

1Groupthink and its consequences have been documented, among others, by Cohan (2002), Hersh (2004),
Eichenwald (2005), and Isikoff and Corn (2007).

2See Bénabou (2012) for an exhaustive survey of the literature on contagion of distorted beliefs and emergence
of collective beliefs.
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1.1 Motivation of the Solution Concept

This paper is an attempt to set out a model that allows for the presence interdependencies in

beliefs without strategic interactions in actions when information is endogenous. In addition, as

mentioned earlier, we wish to use the model to analyze information acquisition decisions when

the agents are connected through a network.

Information acquisition is typically modeled through a two-stage game where the agents

have incomplete information about the state. A simple specification is one in which nature

chooses first a state realization (which remains unknown to the agents) and then the agents

make information choices (about the state) in the first stage and choose actions in the second

stage. Thus, some dynamic process is naturally involved in this sort of interactions. The solution

concept typically used for these games is that of perfect Bayes-Nash equilibrium—henceforth,

PBE—(or some weaker concept or a refinement of it). For the information acquisition game

that we have described, PBE requires that each agent (a) chooses optimally her action in the

second stage given the amount of information that she has collected in the first stage and (b)

chooses optimally the amount of information that she acquires in the first stage, taking as given

the actions that the agents optimally choose in the second stage. In this way, despite the fact

that agents move sequentially, the game is solved as if decisions were taken simultaneously. This

is the standard approach followed when the agents make, in general, different decisions over

several periods.

Nevertheless, the games of information acquisition described above have in common a partic-

ular feature that makes them very special compared to other games: the choice made in the first

stage does not simply corresponds to a payoff-relevant action but it determines the (posterior)

beliefs (and, thus, the expected utility) that the agent has in the second stage. In other words,

the preferences that the agents use to make their decisions in the second stage are endogenously

chosen in the first stage. Then, how do agents anticipate in the first stage the form that their

preferences will have in the second stage? This question is particularly relevant in environments

in which we care about how others perform in their tasks. In these situations, our information

choice in the first stage determines the precision with which we perceive in the second stage how

the others align their actions with the state.
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Although applying PBE to the class of games described above entails that we do take into

account the future optimal actions that all the agents will choose (using their information deci-

sions), it fails to capture how our information choice affects the way in which we anticipate our

(endogenous) perception of our future utility. A realistic description of the problem that an agent

faces in this sort of situations should be consistent with the following facts: (a) sequentiality

matters since the agent obtains her preferences for the second stage as a result of her decision in

the first stage (not to mention that in practice there might be a large temporal lag between both

stages); (b) in the second stage, the agent is uncertain both about the state and the information

received by others prior to choosing her action (unless she acquires full information); and (c)

in the first stage, before making her information choice, the agent is not only uncertain (with

her priors) about the state and about what others know, but she also anticipates that she will

be uncertain (with her posteriors) in the second stage. In view of (c) above, a plausible theory

of how the agent computes her expected utility in the first stage should capture the fact that

she considers that in the second stage her preferences will be represented by an expected utility

form which makes use of her posteriors.

As mentioned earlier, by using PBE to solve this class of games, one considers that both

information and action decisions are taken simultaneously. More important, in order to compute

an agent’s expected utility in the first stage, one substitutes the optimal actions that all the

agents choose in the second stage into the agent’s utility under certainty. Thus, once optimal

actions are determined for each information choice, the game is solved as if the agent anticipates

in the first stage that she will face no uncertainty in the second stage (neither about the state

nor about the private information finally held by others). In the standard approach there is no

realistic story of how the agent evaluates her utility in the first stage by anticipating preferences

under certainty for the second stage.

Also, using PBE, one assumes that in the first stage the agent takes as given the information

choices of the others. Using this, the agent can obtain the correct distribution over the pieces

of private information finally held by the others. In a realistic description, the agent should

rather anticipate in the first stage that, in the second stage, she will use her posteriors (obtained

through her information decision) to predict both the private information received by the others

and the proximity of their actions to the state.
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A plausible theory of how we acquire information when our future utility is affected by how

others collect information should consider both that we anticipate that our future preferences

will be under uncertainty, and that we incorporate the effects of our present information decisions

over our future expected utility. Our view is that PBE is a solution concept suitable broadly for

sequential games under incomplete information but that our approach might be (at least under

some circumstances) more finely tailored to the specific problem at hand.

In this paper, we propose a solution concept for the class of information acquisition games

described above which is based on an alternative theory/description of how the agents evaluate

their utilities at the moment in which they acquire information. This approach has the central

concern that the agents, when evaluating their first-stage preferences, (a) anticipate that they

will have preferences under uncertainty in the future and (b) include the effects induced by their

information decisions over their future expected utilities. The key element of our approach is

that, when deciding about information acquisition, an agent cannot predict correctly what other

agents will learn with their information choices and, therefore is uncertain about their optimal

actions. In the first stage, each agent puts herself in the situation under uncertainty that she

will face in the second stage with her information choice. This assumption can be seen as a

failure of (or lack of confidence in) contingent thinking.

More specifically, we assume that each agent computes her first-stage expected utility as the

nested expected value (according to her priors and taking as given the information acquisition

strategies of all agents) of her possible expected utilities (according to her posteriors) in the

second stage. In this way, the agent anticipates her future expected utility. In contrast, in a

PBE, the agent computes her first-stage expected utility as the expected value of her future

utilities under certainty, evaluated in the agents’ optimal actions. This is the only difference

between our approach and the standard one. In addition, exactly as one considers in a PBE,

we assume that each agent’s second-stage expected utility is computed as the expected value

of her utility (according to her posteriors), that posterior beliefs are consistent with strategies

according to Bayes rule, and that each agent is sequentially rational in each stage of the game.

These conditions define the solution concept, Equilibrium with Anticipation of Expected Utility

(EAEU), that we use in this paper to analyze interactions in information decisions.

Following the motivation given above, we then use the EAEU solution concept to explore in-
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formation acquisition between agents who are connected through an exogenously given network.

We use a two-stage game as the one described earlier. In the first stage, each agent chooses the

amount of information that she acquires, at a cost, from her neighbors. In the second stage,

each agent chooses an action. We assume that the agents are able to receive information only

from their direct neighbors in the network.

1.2 Preview of the Results

Because each agent anticipates, with some degree of uncertainty, how others align their actions

with the state, there arise linkages between the agents’ information acquisition decisions. In our

model, the network structure affects the incentives of the agents to acquire information as oth-

ers improve their own information. In particular, Proposition 2 shows that the incentives of an

agent to acquire information from a neighbor decrease with the amount of information that the

rest of neighbors of that neighbor collect from her. Thus, substitutability in information acqui-

sition arises between agents indirectly connected (through a common neighbor) in the network.

This interdependence of information decisions leads to an emergence of correlated (distorted)

posteriors which is consistent with the various phenomena mentioned earlier of contagion of be-

liefs without strategic interactions in actions. The substitutive nature of information decisions

is also consistent with recent theoretical developments on investment decisions in international

financial markets. For instance, Nieuwerburgh and Veldkamp (2009) provide an explanation

for the home bias puzzle which is based on the presence of substitutive information acquisition

decisions between investors.

Under the class of preferences assumed in the present paper, each agent is risk-averse with

respect to the discrepancy between each of the other agents’ actions and the state. This assump-

tion plays an important role in the mechanism which drives our results. When some agent k

acquires more information from a neighbor j of us, k’s optimal action becomes closer to the true

value of the state. Since we are risk-averse with respect to the distance between the state and

the action taken by agent k, we benefit from a decrease on the level of riskiness of our uncertain

stream of utilities. On the other hand, by acquiring more information from our neighbor j, we

increase the precision with which we perceive both our future utility and how agent k’s action

approaches the state. Thus, both information decisions enter multiplicatively in our first-stage
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expected utility and, in particular, they interact in a substitutive way.

The model’s welfare analysis provides conditions in terms of a precise measure of the net-

work density, namely, the minimum degree of the network, under which efficient information

acquisition can be attained in equilibrium. These implications, stated in Corollary 1, suggest

that the compatibility between efficiency and equilibrium is favored when the network allows

each agent to acquire information from a sufficiently large number of neighbors.

1.3 Related Literature

An approach closely related to the one pursued in this paper is that recently followed by Bénabou

(2012). Motivated by the phenomenon of groupthink, and by other instances of documented

contagion of distorted beliefs, he proposes a model with endogenous information in which the

agents have anticipatory preferences. As in the present paper, he considers that there are neither

strategic interactions in actions nor signals that could lead to herding or social learning. The key

mechanism in his model is that, when the agents anticipate their utilities from future prospects,

there arise cognitive linkages that relate how they accept (or deny) new private information

with the way in which others deal with their own new pieces of information. In his model,

“thinking styles thus become strategic substitutes or complements” despite the assumption that

there are no strategic interactions in actions. The message conveyed by Bénabou’s (2012) model

has a clear resemblance with the insights provided by the present paper. Both models share

the common feature that there is a connection between the information that the agent receives

about the information possessed by others and her “overall” utility. Our model, however, differs

from his in that he considers explicitly that the agents derive utility from anticipating their

future preferences while we assume that the agents, through their information decisions, affect

the precision with which they anticipate their perception of how others improve their knowledge

from their information decisions.

Our approach is also related to the literature on cognitive dissonance3 since, given our

assumption which specifies how the agents compute their first-stage expected utilities, an agent’s

information choice can be viewed as a decision over how she perceives her future utility. In their

seminal paper on cognitive dissonance within the field of economics, Akerlof and Dickens (1982)

3See, e.g., Akerlof and Dickens (1982), Schelling (1986) Rabin (1994), Bénabou and Tirole (2002, 2004),
Compte and Postlewaite (2004), and Di Tella, Galiani, and Schargrodsky (2007).
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(p. 307) describe the behavioral features studied in their model as:

“First, persons not only have preferences over states of the world, but also about

their beliefs about the state of the world. Second, persons have some control over

their beliefs . . . . Third, it is of practical importance for the application of our theory

that beliefs once chosen persist over time.”

The approach pursued in this paper captures these three features above as important ingredients

of the model. Yet, the present model is different from the models of cognitive dissonance in that

we consider that agents anticipate future situations under uncertainty while cognitive dissonance

implies that the agents make (intentionally) incorrect assessments about the state. In addition,

our model studies the interaction between the beliefs of agents who face a common enterprise,

a question which is not in principle addressed by the literature on cognitive dissonance.

Our approach to modeling strategic interactions in information decisions stems from these

earlier contributions within the behavioral economics literature. Yet, following the traditional

approach, some papers have recently analyzed communication networks using Bayesian belief

revision processes to model information transmission. A common feature of these models is that

they consider strategic interactions in actions. Calvó-Armengol and de Mart́ı (2007) consider

a framework where agents communicate through a given network as a result of a Bayesian

belief revision process that takes place in successive rounds. An important difference with the

present paper is in that they do not consider endogenous information transmission decisions.

Hagenbach and Koessler (2010) consider a model where each agent decides whether or not to

reveal her private information to the others before choosing her own action. The choices on

information revelation determine endogenously a communication network. The main difference

with the present paper is in the fact that, instead of information acquisition, they deal with

information revelation decisions. In their framework, an agent’s information choice does not

affect her own future preferences under uncertainty. Thus, the motivation given earlier for

our approach is not compelling for the problem that they analyze. Two other papers that,

following the traditional approach, have recently analyzed endogenous information transmission

within networks are Calvó-Armengol, de Mart́ı, and Prat (2011), and Galeotti, Ghiglino, and

Squintani (2011).
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The rest of the paper is organized as follows. The model, and the notions of EAEU and

efficiency are introduced in Section 2. Section 3 studies efficient and equilibrium information

acquisition decisions, and presents the results that relate the compatibility between equilibrium

and efficiency to the network density. Section 4 concludes with a discussion of the results. The

proofs of propositions 1 and 2 are grouped together in the Appendix.

2 The Model

2.1 Network Notation

We follow the notation developed by Jackson and Wolinsky (1996). There is a finite set of agents

N := {1, . . . , n}, with n ≥ 2. The shorthand notation ij denotes the subset of N , of size two,

containing agents i and j, which is referred to as the link ij. A communication network g is

a collection of links where ij ∈ g means that i and j are directly linked and able to acquire

information from each other under network g. We assume that the architecture of the network

itself is exogenously given and common knowledge. Let G denote the set of all possible networks

on N . For a network g ∈ G, the set of agent i’s neighbors is Ni(g) := {j ∈ N : ij ∈ g} and the

number of her neighbors is ni(g) := |Ni(g)|. We consider that ii ∈ g for each i ∈ N and each

g ∈ G so that i ∈ Ni(g) by construction. Finally, let δ(g) := mini∈N ni(g) denote the minimum

degree of network g, a measure which informs us about the density of network g.

2.2 Information Structure and Preferences

Given a network g ∈ G, agents are engaged in a game that is played in two consecutive stages,

numbered 1 and 2. In stage 1, each agent i decides the amount of information that she acquires

from each agent in her neighborhood Ni(g). We consider that each agent acquires full infor-

mation from herself. Information decisions are simultaneous. In stage 2, each agent chooses an

action using the information that she has acquired from her neighbors in stage 1. Actions are

simultaneous as well.

We consider an information structure with complementarities. The initial private informa-

tion held by each agent i is described by her type θi ∈ Θi := R. A state of the world is a vector

θ := (θi)i∈N ∈ Θ := ×i∈NΘi = Rn so that agent i’s type is the respective coordinate θi of the
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actual state θ.4 All aspects of this game, except θ, are common knowledge. Thus, the assumed

information structure exhibits complementarities in the sense that any two distinct agents im-

prove their knowledge of the underlying state by sharing their pieces of private information. In

particular, the true state is always obtained by combining the pieces of private information of

all the agents.5

Although the proposed information structure relates generally to situations with informa-

tional complementarities, the main motivation of this structure comes from situations where the

agents face (independently) a common decision problem with several “aspects” so that solving

the problem requires to solve the various aspects. Each agent can be seen as an “expert” in

one aspect so that the knowledge about how to solve the problem is improved by information

sharing. The goal of this information structure is to capture environments where the agents face

a joint enterprise and there are complementarities in the initial information that they possess.

An action for agent i is an n-coordinate vector ai := (aik)k∈N ∈ Ai := Rn. Notice that the

action space available to each agent coincides with the state space. The idea here is to think of

an action as a collection of all the independent steps that an agent must take in order to solve

her decision problem (i.e., one step for each aspect of the problem). Thus, the k-th coordinate

aik of agent i’s action vector summarizes the action taken by agent i with respect to the k-th

aspect of the decision problem. Let a := (ai)i∈N ∈ A := ×i∈NAi = Rn2
denote an action profile.

We consider a class of preferences under which there are no strategic interactions over actions.

Each agent wishes to match her own action with the true state and, in addition, is concerned

about the extent to which the other agents align their actions with the state. We use the term

team concern to designate this second motive. We wish to capture situations in which the

organization’s profits (either monetary or in terms of prestige) increase with the performance

of its members in their tasks and in which each member is accordingly rewarded in terms of

reputation or monetary payments.6

4The proposed set of states is similar to those used in models of multidimensional cheap talk. See, e.g.,
Chakraborty and Harbaugh (2007), and Levy and Razin (2007).

5Jiménez-Mart́ınez (2006) proposes an analogous information structure to study a two-agent information shar-
ing problem.

6Think, for example, of a set of investors choosing their investment strategies in a new sector, where the
profitability of the sector increases with the number of investors who make good investment decisions. In this
case, each investor naturally cares about the extent to which other investors align their actions with the state.
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The utility to agent i is described by a function ui : A×Θ→ R, specified as

ui(a, θ) = −(1− r)‖θ − ai‖2 −
r

n− 1

∑
j 6=i

‖θ − aj‖2, (1)

where ‖ · ‖ denotes the Euclidean norm. The parameter r ∈ [0, 1] above measures agent i’s

concern about the alignment of the others’ actions with the state. The first term in equation (1)

is the quadratic loss in the (Euclidean) distance between agent i’s own action and the state. The

second term is the team concern, i.e, the payoff loss derived from the discrepancy between the

other agents’ actions and the state. Since an agent’s utility is strictly decreasing with respect

to the distance between her action and the state, she has incentives to acquire information in

order to pick actions better suited to the state. Note also that the specified preferences represent

common interests for the agents.

Although the class of preferences described above is very specific, it can be viewed as a

second-order approximation of a more general class of convex preferences. While the assumptions

imposed on preferences make the analysis tractable, they enable us to work with all the relevant

ingredients in an environment without strategic interactions over actions and with (positive)

external effects.

2.3 The Information Transmission Process

Each agent can receive information from another agent through a message realization, whose

distribution is conditional on the sender’s type. A message received by an agent i from another

agent j is denoted by mij ∈ R. We use mi := (mij)j∈N ∈ Rn to denote a vector of messages

received by agent i, and m := (mi)i∈N ∈M := Rn2
to denote a message profile. A natural way

to interpret a message mij = θj , privately listened by agent i, is as a statement that agent j’s

type takes the value θj .

Note that, in principle, we allow each agent to receive messages from any agent in the group

(including herself). However, the network structure g restricts the information that the agents

ultimately receive from others. In particular, an agent i will obtain no information whatsoever

from the message mij received by any agent j /∈ Ni(g), i.e., who is not in her neighborhood. Also,

an agent i will obtain full information from her own message mii (this information, however, is

redundant since she already knows her type). Below we describe in detail how these features

are modeled.
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Following the pertinent literature, we consider a Gaussian information structure for tractabil-

ity. At the beginning of stage 1, nature draws a state realization θ from a multi-normal distribu-

tion with mean vector µ1 and variance-covariance matrix σ2I, where µ ∈ R, σ2 > 0, 1 denotes

the n-dimensional vector of ones, and I denotes the n × n identity matrix. This distribution

summarizes the (common) priors of the agents about the state. Notice that we are assuming

that each type θi is normally distributed with mean µ and variance σ2 and that, furthermore,

the agents’ types are independent.

After the state realization is drawn, each agent i learns her type and chooses, for each of agent

j ∈ N , the precision of the message through which she receives information from j. This choice

regarding another agent’s message can be naturally interpreted as a decision about the quality

of the message service through which we receive information from her. In practice, this choice

is often costly. Then, according to this choice, the agent receives privately a message realization

from each agent in the group (including herself). All messages are sent simultaneously.

We assume that, for each i, j ∈ N , mij = θj + εij , where εij is an idiosyncratic noise in

the information acquisition process of agent i from agent j. This additive structure for the

information transmission process can be also expressed as mi = θ + εi, where εi := (εij)j∈N .

For each agent i ∈ N , we assume that each noise term εij is independent of the type θj , as well

as of each εik, k 6= j. In addition, we assume that each pair of random vectors εi and εk, i 6= k,

are independent.

We further assume that each noise term εij is normally distributed with zero mean and vari-

ance ψ2
ij ≥ 0. Notice that the informativeness of the message mij can then be made endogenous

by allowing agent i to choose the variance ψ2
ij at a cost. This modeling choice to endogenize

information acquisition decisions is standard in the related literature.7 Intuitively, lower vari-

ances of the associated noise corresponds to more informative messages. Formally, we define an

information acquisition choice for agent i with respect to agent j as a value for the parameter

ωij := σ2/(σ2 + ψ2
ij) ∈ [0, 1], which reflects the precision of the message strategy with which

agent i acquires information from agent j. The precision ωij chosen by an agent i with respect

to a neighbor j ∈ Ni(g) determines, via Bayesian updating, her posteriors about θj , which she

uses in stage 2 to choose her action. If j /∈ Ni(g), then the network structure g does not allow

7See, e.g., Angeletos and Pavan, (2007), Dewan and Myatt (2008), and Myatt and Wallace (2010).

13



agent i to receive information from agent j. We model this by setting ωij := 0 for j /∈ Ni(g).

Also, we set ωii := 1 for each i ∈ N , which implies that each agent receives full information

from herself (though this information is obviously redundant since she already knows her type).

Given these conventions, let ωi := (ωij)j∈N ∈ [0, 1]n denote an information acquisition strategy

for agent i and let ω := (ωi)i∈N ∈ Ω := [0, 1]n
2

denote an information acquisition profile.

The cost of information acquisition for each agent i ∈ N with respect to each agent j ∈ N is

described by a function c(ωij), which is assumed to satisfy c(0) = 0, and to be strictly increasing

and (weakly) convex in ωij ∈ [0, 1].

Each agent i is able to observe the information decision ω−i of the others before she chooses

her action in the second stage. This assumption is natural if we think that affecting the tech-

nology through which we receive information requires some investments and has observable

consequences. Nonetheless, an agent i cannot observe the particular message mkj received by

any other agent k 6= i from any of her neighbors j ∈ Nk(g). In other words, an agent can observe

the message service used by others to receive information but not the particular messages that

they receive.

Note that, since types are independent, an agent can update her beliefs over the state of

the world by doing separately the corresponding update over each of her neighbors’ types.

Let p(θ) denote the density function that describes any agent’s priors about the state and let

q(θ,m−i|mi, ωi) denote the density function which describes agent i’s posteriors about the state

and the messages received by the other agents. Since types are independent and identically

distributed, we can write p(θ) =
∏

i∈N h(θi), where h(θi) denotes the (marginal) density for any

type θi, i ∈ N .

Regarding the Bayesian updating of beliefs, some basic results on normal distributions imply

that the random variable θj |mij , ωij is normally distributed with mean and variance

E[θj |mij , ωij ] = ωijmij + (1− ωij)µ, Var[θj |mij , ωij ] = σ2(1− ωij). (2)

From the expression in (2) above, we observe that the posterior variance Var[θj |mij , ωij ] is

strictly decreasing in the precision ωij of agent i’s information decision with respect to agent j.

Hence, the informativeness of an information choice about an agent’s type can be completely

ranked according to the induced posterior variance of that agent’s type.
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Other interesting inferences that an agent makes under our information structure are as

follows. Consider a pair of distinct agents i, k ∈ N who can acquire information from a common

neighbor, j ∈ Ni(g) ∩ Nk(g). It follows that the random variable mkj |mij , ωij is normally

distributed with mean and variance

E[mkj |mij , ωij ] = ωijmij + (1− ωij)µ, Var[mkj |mij , ωij ] = σ2(1− ωijωkj)/ωkj . (3)

Also, the conditional covariance between the type θj and the message received by agent k from

agent j is given by

Cov[θj ,mkj |mij , ωij ] = σ2(1− ωij). (4)

Finally, note that the assumed information structure also implies that, for any pair of

distinct agents i, k ∈ N who can acquire information from a common neighbor j, we have

Cov[mij ,mkj |θj , ω] = 0. Thus, any two messages mij and mkj received by different agents

from a common neighbor are (conditionally) independent and there is no public information

component which could give rise to spread of beliefs between indirectly connected agents.

2.4 Equilibrium (EAEU) and Efficient Information Acquisition

An action strategy for agent i with respect to aspect j is a function αij : M × [0, 1] → R that

associates her choice of action aij = αij(mij , ωij) (over coordinate j of the action space) to the

message mij that she receives from agent j and to her information acquisition choice ωij . Since

types are independent and all messages are sent simultaneously, an agent’s choice of action

over a particular coordinate depends only on the message that she receives from the expert

in that aspect of the problem, as specified. An action strategy for agent i is then a function

αi : Rn×[0, 1]n → Ai defined by αi := (αij)j∈N . An action strategy αi associates agent i’s action

ai to the vector of messages mi that she receives and to her information acquisition strategy ωi.

Let α := (αi)i∈N denote an action strategy profile. Note that an action strategy profile α(m,ω)

specifies an action profile for a message profile m and an information acquisition profile ω.

The stage 2–expected utility of agent i, for a given information acquisition profile ω and a

given vector of messages mi received by agent i, is

Ui,2(α;ω,mi) := E
[
ui
(
αi(mi, ωi), (αj(mj , ωj))j 6=i, θ

) ∣∣mi, ω
]

=

∫
Θ

∫
M−i

q(θ,m−i|mi, ωi)ui
(
αi(mi, ωi), (αj(mj , ωj))j 6=i, θ

)
dm−idθ.
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Of course, this is the expected utility that one considers for stage 2 using the traditional approach

as well.

To illustrate how agents compute their expected utilities in the first stage under our ap-

proach, let us consider first the traditional approach. Note that, under our assumptions on the

information transmission process, the random vector m|θ, ω follows a multi-normal distribution.

Let f(m|θ, ω) denote the corresponding density, which describes the probability with which the

message profile m is sent conditioned on the state θ and on the information acquisition profile ω.

Also, since messages are sent independently, we can write f(m|θ, ω) =
∏

i∈N
∏

j∈N g(mij |θj , ωij),

where g(mij |θj , ωij) denotes the (marginal) conditional density for message mij .

In the first stage, for a given information acquisition profile ω, each agent uses the den-

sity f(m|θ, ω) to compute the expectation of her utility evaluated in the agents’ action strate-

gies. In addition, using her priors, the agent computes her expectation of that expected value.

Then, given an action strategy profile α and an information acquisition profile ω, the term∫
M f(m|θ, ω)ui

(
α(m,ω), θ

)
dm can be naturally interpreted as the anticipation of agent i’s fu-

ture stream of utilities
{
ui
(
α(m,ω), θ

)
: m ∈M

}
(that is, under certainty since no expected

utility is considered) for a given θ ∈ Θ. Given this, note that in a PBE (or a weaker or stronger

solution concept), agent i anticipates in the first stage her future stream of utilities by computing

E
[
E
[
ui
(
α(m,ω), θ

) ∣∣ θ, ω]] =

∫
Θ
p(θ)

[ ∫
M
f(m|θ, ω)ui

(
α(m,ω), θ

)
dm
]
dθ.

Therefore, the agent anticipates the set of her possible ex-post utilities
{
ui
(
α(m,ω), θ

)
: m ∈M

}
.

The agent anticipates as well that she will consider such utilities under certainty. PBE entails

the idea that the agents make simultaneously their decisions for both stages of the game. This

logic is appropriate to study most sequential games. However, some time separation seems a

fundamental aspect of a game in which the agents decide first on their future posteriors and

then use those posteriors to make another decision. Our view is that there are limits, due maybe

to cognitive restrictions, in the agents’ abilities to compute simultaneously both the influence

of everyone’s information decision on optimal actions and how this ultimately affects their own

utilities.

In addition, note that application of PBE to our two-stage game implies that an agent i uses

in the first stage the density f(m|θ, ω) to anticipate her future utilities. Then, at the moment in
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which she decides about information acquisition, she takes as given the densities g(mkj |θj , ωkj)

chosen by other agents k (with respect to any other agent j 6= i) and, accordingly, anticipates

with certainty not only her own future utility but also the message realizations mkj privately

received by any other agent k. Thus, following the traditional approach, one computes an agent’s

expected utility in the first stage as if the agent not only observes the message service used by

others but as if she also learns the correct distribution over the private messages that others

receive. A plausible theory about how the agent computes her expected utility in the first stage

should consider that she rather anticipates her posteriors about the messages received by other

agents.

Our approach is based on the assumption that the agents are not able to make simultaneously

their decisions for both stages and that they anticipate in the first stage their stream of future

utilities under uncertainty (or interim utilities). Specifically, we assume that, given an action

strategy profile α and an information acquisition profile ω, each agent i ∈ N anticipates her

stream of utilities {Ui,2(α;ω,mi) : mi ∈ Rn }, which are computed using the posteriors that her

information decision generates. Thus, each agent i anticipates in the first stage her future stream

of utilities by computing

E
[
E
[
Ui,2(α;ω,mi)

∣∣ θ, ω]]
=

∫
Θ
p(θ)

[ ∫
M
f(m|θ, ω)

(∫
Θ

∫
M−i

q(θ,m−i|mi, ωi)ui
(
α(m,ω), θ

)
dm−idθ

)
dm

]
dθ.

Consequently, we assume that agent i’s stage 1–expected utility, Ui,1, is specified as

Ui,1(ω) :=

∫
Θ
p(θ)

[ ∫
M
f(m|θ, ω)Ui,2(α;ω,mi)dm

]
dθ −

∑
j∈Ni(g)

c(ωij). (5)

Under the formulation above, we are assuming that the agent anticipates her stage 2–expected

utility Ui,2(α;ω,mi) instead of her utility under certainty ui(α(m,ω), θ). This is the only differ-

ence between our approach and the traditional one.

Finally, note that our approach can be alternatively interpreted as considering that the

agent is divided into two selves so that the stage 1–self anticipates the self that she will be

in stage 2 with her information decision. On the other hand, under the traditional approach,

one assumes that the agent can make use in stage 1 of the others’ information decisions in

order to obtain inferences about their private pieces of information (i.e., the messages that
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they will receive). However, the agent will in general not be able to make such inferences in

stage 2. In the traditional approach, prior to making her information decision, the agent can

predict (correctly) the private messages that anyone will obtain in stage 2 and can compute the

contingent optimal actions of all agents. Furthermore, the traditional approach considers that

all these computations are made simultaneously in a single period. Our assumption on how the

agent computes her stage 1–expected utility is based on our view that there may be cognitive

limits to the way in which the agent can make such calculations.

We restrict attention to equilibrium in pure strategies.

Definition 1 (EAEU). Given a network g ∈ G, an Equilibrium with Anticipation of Expected

Utility (EAEU) is an information acquisition profile ω∗ and an action strategy profile α∗ such

that the following conditions are satisfied for each agent i ∈ N :

(i) sequential rationality in stage 2; for each ω ∈ Ω and each mi ∈ Rn,

Ui,2(α∗;ω,mi) ≥ Ui,2(αi, α
∗
−i;ω,mi) for each αi.

(ii) sequential rationality in stage 1; for each α,

Ui,1(ω∗) ≥ Ui,1(ωi, ω
∗
−i) for each ωi ∈ [0, 1]2.

(iii) belief consistency; for each ω ∈ Ω and each mi ∈ Rn, (a) each random variable θj |mij , ωij

is normally distributed with mean and variance given by (2), and (b) each random variable

mkj |mij , ωij , for k ∈ Nj(g) \ {i}, is normally distributed with mean and variance given by (3).

The welfare measure that we propose to gauge the efficiency properties of equilibrium profiles

makes use of the sum of the expected utilities of all the agents in stage 1. We require that

the agents choose optimally their action strategies in stage 2 and then compare information

acquisition profiles. Hence, we allow the planner to change the information initially acquired

by the agents, who will then pay the corresponding new cost of information acquisition and use

such information to optimally choose their actions. Specifically, for each message profile m ∈M

and each information acquisition profile ω ∈ Ω, the planer considers in stage 2 a welfare function
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W2, defined by

W2(θ;m,ω) :=
∑
i∈N

ui(α
∗(m,ω), θ),

where each α∗i , i ∈ N , satisfies the (stage 2) sequential rationality requirement stated in condi-

tion (i), using the posteriors described in condition (iii), of Definition 1 above. An important

difference in our model between an agent’s behavior and the planner’s choice should be noted.

Although the planner is able to change the agents’ posteriors, the planner’s choice does not

affect his own perception of the agents’ stream of future utilities. Therefore, we assume that the

planner computes his expected utility in stage 1 by anticipating future utilities under certainty.

This is in contrast with our key assumption about how an agent anticipates her own future

possible utilities. This modeling assumption is based on the idea that the planner’s choice in

stage 1 affects the agents’ future preferences but not his own. Thus, our proposal is that the

planner considers a stage 1–welfare function W1, specified as

W1(ω) := E
[
E
[
W2(θ;ω,m)

∣∣ θ, ω]]−∑
i∈N

∑
j∈Ni(g)

c(ωij)

=

∫
Θ
p(θ)

[ ∫
M
f(m|θ, ω)

∑
i∈N

ui
(
α∗(m,ω), θ

)
dm

]
dθ −

∑
i∈N

∑
j∈Ni(g)

c(ωij),
(6)

where each α∗i , i ∈ N , satisfies the sequential rationality requirement stated in condition (i),

using the posteriors described in condition (iii), of Definition 1.

Definition 2. Given a network g ∈ G, an information acquisition profile ω̂ is efficient ifW1(ω̂) ≥

W1(ω) for each ω ∈ Ω.

3 Main Results

This section studies efficient and equilibrium (using EAEU) information acquisition, and relates

the compatibility between them to the network density.

An important observation that follows from our utility specification (equation (1)) is that

the welfare function evaluated in stage 2, W2, takes the form

W2(θ;m,ω) = −
∑
i∈N

∑
j 6=i

(
θj − α∗ij(mij , ωij)

)2
.

Hence, the planner seeks to keep the action of each agent close to the underlying state and

ignores the team concern of each agent. This is due to the fact that agents are ex-ante identical
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so that the influence of each agent’s action on any other agent’s utility is homogenous across

agents.

We restrict attention to interior information decisions. A clarification is then in order since,

by construction, ωij = 0 if j /∈ Ni(g) and ωii = 1. In the sequel, by interior information decision

profile, we mean a profile in which each agent i ∈ N chooses an interior information decision

ωij ∈ (0, 1) with respect to each neighbor other than herself, i.e, for each j ∈ Ni(g) \ {i}. The

following two propositions analyze, respectively, efficient and equilibrium profiles in which all

information decisions are interior.

Proposition 1. For each network g ∈ G, an interior efficient information acquisition profile

ω̂ is characterized by the condition c′(ω̂ij) = σ2 for each i ∈ N and each j ∈ Ni(g).

The result in Proposition 1 above simply expresses the intuitive insight that efficiency is char-

acterized by the condition that, for each link ij in the network, the marginal cost of information

acquisition must equal the marginal benefit of information acquisition.

The next proposition characterizes an agent’s best response in information decisions. In our

model, the optimal decision of an agent i with respect to the information that she acquires from

a neighbor j ∈ Ni(g) depends on the information decisions of the other neighbors of agent j.

Thus, under the assumption that the agents anticipate their future stream of expected utilities,

there arise linkages that relate the information decisions of agents who are indirectly connected

through common neighbors.

Proposition 2. Consider a network g ∈ G and an interior information acquisition profile ω∗

corresponding to some EAEU. Then, the optimal information decision of an agent i with respect

to a neighbor j ∈ Ni(g) is characterized by the condition

c′(ω∗ij) = 2(1− r)σ2 + rσ2/(n− 1)
∑

k∈Nj(g)\{i}

[1 + ω∗kj(ω
∗
kj − 2)].

Consider two agents i and k who can acquire information from a common neighbor j. Since

the term ωkj(ωkj − 2) decreases with ωkj ∈ (0, 1), it follows from the result in Proposition 2

above, and from the assumption that c(ωij) is convex in ωij , that higher precision of agent k

about the information that she receives from agent j leads to a decrease in agent i’s incentives

to improve the information that she receives from agent j. Thus, by restricting attention to
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interior information choices, we show that information decisions are strategic substitutes in our

context.

Given our assumptions on preferences, the expected utility of agent i in stage 2 incorporates

her concern about how agent k learns about agent j’s type. In stage 2, agent i observes agent

k’s information decision ωkj with respect to agent j. Recall that agent i does not observe

the message realization mkj that agent k receives. However, using ωkj together with her own

information choice about agent j’s type, agent i can make inferences about mkj . In stage 2,

agent i cares about the (conditional) covariance between the message received by agent k from

agent j and agent j’s type and about the (conditional) variance of that message mkj .

On the one hand, higher covariance between θj and mkj implies that the knowledge about

θj reflects with better precision the value of mkj . This implication lowers the value of agent

i’s information about θj . Nevertheless, in our information structure, agent k’s information

decision about θj does not affect the covariance Cov[θj ,mkj |mij , ωij ]. In fact, this covariance is

only affected by agent i’s information choice ωij . Recall from (4) that Cov[θj ,mkj |mij , ωij ] =

σ2(1− ωij).

On the other hand, higher variance Var[mkj |mij , ωij ] implies that the message mkj is more

uncertain for agent i and, therefore, increases the value of agent i’s information about θj . When

agent k improves her information about agent j’s type, this naturally makes mkj to fluctuate

less around θj and leads to lower (conditional) variance of the message mkj . Recall from (3)

that Var[mkj |mij , ωij ] = σ2(1− ωijωkj)/ωkj .

Under the EAEU solution concept, in which the agents anticipate their future expected

utilities, the implications above are anticipated by agent i in the first stage and, therefore, an

increase in the precision of the information that agent k acquires from agent j makes less valuable

agent i’s information acquisition from agent j. Since information acquisition is costly, this leads

to a decrease in the precision of the information that agent i acquires from agent j. In this

way, substitutability of information decisions propagates along the network between indirectly

connected agents who have common neighbors.

Inspection of the condition given in Proposition 2, which characterizes an agent’s best re-

sponse in information decisions, directly reveals that equilibrium is not unique. Nevertheless,

despite the multiplicity of equilibria, we are able to relate the compatibility between the efficient
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and the equilibrium information decisions to the minimum degree of the network, provided that

attention is restricted to interior information choices.

3.1 Equilibrium, Efficiency, and the Network Density

Suppose first that there is no team concern, i.e., r = 0, so that each agent cares only about

solving her own task. Then, for each agent i and each neighbor j ∈ Ni(g), by combining

the results in propositions 1 and 2, and by using the assumption that c(xij) is convex, we

obtain that ω∗ij > ω̂ij for each pair of (interior) equilibrium and efficient information acquisition

profiles, respectively, ω∗ and ω̂. Thus, agents over-invest in information acquisition with respect

to the efficient information choice. The reason for this inefficient behavior is intuitive under the

approach followed in this paper. The agents anticipate future situations in which, in general

(i.e., when they acquire some information), they will be better informed about the state than in

the present. As a consequence, they anticipate future lower variances of the true state and are

willing to invest more in information acquisition in the present. Thus, our model delivers the

behavioral implication that the agents are overoptimistic about the effects of their information

acquisition decisions. Note that this inefficiency is present in our model regardless of the network

structure.

We turn now to study how the network structure relates to the compatibility between efficient

and equilibrium interior information decisions. Note first that by combining the results in

propositions 1 and 2, it follows that an (interior) equilibrium information profile ω∗ is efficient

only if the equality

r

n− 1

∑
k∈Nj(g)\{i}

[1 + ω∗kj(ω
∗
kj − 2)] = 2r − 1

is satisfied for each agent i ∈ N and each neighbor j ∈ Ni(g). Now, it can be verified that, for

levels of the team concern given by r ∈ [0, 1/2], the left-hand side of the expression above is

always strictly positive while the right-hand side is either negative or zero so that any interior

equilibrium profile is inefficient. In addition, for r = 1, the left-hand side of the expression

above is always less than one so that any interior equilibrium profile is inefficient as well. Thus,

the compatibility between equilibrium and efficient (interior) information decisions necessarily

requires some concern about our own performance (r < 1) and relatively high levels of the team

concern (r > 1/2). Then, for levels of the team concern described by r ∈ (1/2, 1), the following
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corollary follows by combining the results in Proposition 1 and Proposition 2.

Corollary 1. Suppose that r ∈ (1/2, 1) and let ω̂ be an interior efficient information acquisition

profile. Then, there exists a function φ : (1/2, 1)→ (1, n), which is strictly increasing in r, such

that if the density of the underlying network g is sufficiently high so that δ(g) ≥ φ(r), then ω̂

can be achieved as an equilibrium (EAEU) information profile. Conversely, if δ(g) < φ(r), then

the efficient information profile ω̂ cannot be achieved as an equilibrium (EAEU) information

profile.

The result in Corollary 1 is obtained by specifying, for each i ∈ N and each j ∈ Ni(g), the

function

Fi,j(ω) :=
r

n− 1

∑
k∈Nj(g)\{i}

[1 + ωkj(ωkj − 2)],

which happens to be continuous in each ωkj ∈ (0, 1), for each k ∈ Nj(g) \ {i}. We note that

Fi,j(ω) ∈
(

0,
r(nj(g)− 1)

n− 1

)
for each interior ω. To achieve an interior information profile ω̂ as equilibrium, we need then

to choose a profile ω∗ so as to obtain the equality Fi,j(ω
∗) = 2r − 1 for each i ∈ N and each

j ∈ Ni(g). Given the continuity properties of each function Fi,j , it follows that ω∗ can be chosen

as required if the following sufficient condition holds for each j ∈ N :

r
(
nj(g)− 1

)
n− 1

≥ 2r − 1 ⇔ nj(g) ≥ 1 +
(2r − 1)(n− 1)

r
.

Now, all these conditions are satisfied if δ(g) ≥ 1 + (2r − 1)(n− 1)/r. Then, we can specify

φ(r) := 1 + (2r − 1)(n− 1)/r, a strictly increasing function whose image lies in the interval

(1, n). In addition, if δ(g) < 1 + (2r − 1)(n− 1)/r, then we know that

r
(
nj(g)− 1

)
n− 1

< 2r − 1

for some j ∈ Ni(g) and some i ∈ N . Then, necessarily,

r

n− 1

∑
k∈Nj(g)\{i}

[1 + ωkj(ωkj − 2)] < 2r − 1,

an inequality which, given that c(ωij) is convex, implies ωij < ω̂ij . Thus, in this case, agent

i invests in information acquisition from her neighbor j less than in the efficient information

profile.
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Hence, the compatibility between efficient and equilibrium information decisions requires that

each agent has a number of neighbors large enough. In this sense, sufficiently dense networks

favor that efficient information decisions can be achieved in equilibrium. Note also that, since

φ(r) is strictly increasing in r, the condition identified in Corollary 1 above implies that, for an

efficient information profile to be achieved as an equilibrium, higher levels of the team concern

require higher density for the underlying network. In particular, note that for r → 1, the

required network structure asymptotically approaches the complete network where each agent

can acquire information from any other agent in the group.

Finally, inspection of the function Fi,j defined above reveals that the attainment of the

required equality Fi,j(ω) = 2r − 1 is favored when agent j has a sufficiently large number of

neighbors (as stated in Corollary 1) but also when each neighbor k 6= i of j acquires relatively low

amounts of information from her. This is so because each term ωkj(ωkj−2) is strictly decreasing

in ωkj ∈ (0, 1). This implication is related to our earlier observation that, in equilibrium,

the agents over-invest in information acquisition when there is no team concern. Note that

the mechanism which drives the result stated in Corollary 1 explicitly presents the number of

neighbors that agent j has as a restriction to achieve the required equality Fi,j(ω) = 2r − 1.

This can be interpreted as the social or physical restriction imposed (locally over agent j) by

the network structure. Yet, if this (exogenous) restriction is overcome so that nj(g) ≥ φ(r),

then reaching efficient information decisions is favored when the neighbors k 6= i of j do not

over-invest and, instead, acquire low amounts of information from agent j.

Hence, our model delivers also the following, perhaps paradoxical, behavioral implication.

On the one hand, the compatibility between efficient and equilibrium information decisions is

favored when the network structure allows each agent to acquire information from a sufficiently

large set of neighbors. On the other hand, each agent gets closer to her efficient information

decision as she acquires lower amounts of information from her neighbors. Thus, although the

attainment of efficient information decisions requires that we have a number of neighbors large

enough, we tend to behave more efficiently when we do not over-invest or, in other words, when

we do not take full advantage of our links in the network.
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4 Concluding Comments

The environment investigated in this paper is one with no conflict of interests over actions and

with a positive externality from the suitability of others’ actions with the state. The purpose

of this paper was two-fold. First, the paper proposed a novel mechanism that generated inter-

dependent information decisions and beliefs without strategic interactions in actions. Private

messages were assumed to be independent and any source of public information was ruled out.

This is important since most models of herding or interdependent (incorrect) beliefs make use

of relations between private signals or of some sort of public information. A notable exception

is the approach pursued by Bénabou (2012). Second, the paper studied both the efficient and

the equilibrium behavior with respect to information acquisition, and related the compatibility

between them to a measure of the network density.

We obtained the result that, when there is no team concern, the agents are overoptimistic

about the effects of their information decisions. This implication seems relevant in some settings,

identified by the large psychology literature on inference, in which people over-interpret the

information they receive from their private signals.

As argued in the Introduction, a natural motivation for our assumption that the agents

anticipate their future expected utilities comes from the fact that, in some environments, people

are not totally accurate in predicting others’ information processing capabilities. Bohren (2010)

provides an explanation for (incorrect) herding which is based on the assumption that the agents

have some exogenous bias in their perception of others’ information processing capabilities. The

mechanism proposed in our approach can be viewed as an attempt to endogenize, through

information decisions, our perception of how others learn about the state and, accordingly, use

their knowledge to choose their actions.

The approach pursued in this paper can be extended to analyze other situations, possibly

with a different class of preferences, but in which an agent makes a strategic decision that

affects her future perception of her own utility. Nevertheless, a large body of the literature

on information transmission in networks (e.g., Hagenbach and Koessler, 2010; Calvó-Armengol,

de Mart́ı, and Prat, 2011; Galeotti, Ghiglino, and Squintani, 2011) focuses on situations in

which the agents decide instead about information revelation. In these games, an agent makes
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a strategic decision that affects the future utility of other agents and, therefore, the motivation

given in this paper for the EAEU solution concept is obviously not compelling. The standard

approach and the use of PBE are clearly appropriate to analyze sequential situations in which

the agents strategically reveal their private information.

Finally, this paper assumed that information cannot be transmitted through agents indirectly

linked in a network. Of course, it would be interesting to investigate the information acquisition

problem when such a network effect is allowed for.

Appendix

This appendix contains the proofs of propositions 1 and 2. Note that the utility specification in

(1) and the assumed information structure imply that an action strategy α∗i which satisfies the

sequential rationality requirement (i), under the posteriors specified in (iii), in the definition of

EAEU (Definition 1) is characterized by

α∗ij(mij , ωij) = E[θj |mij , ωij ] = ωijmij + (1− ωij)µ for each j ∈ N.

With this observation at hand, we proceed to the proofs.

Proof of Proposition 1. Consider a network g ∈ G. The welfare function evaluated in stage 2,

W2, takes the form

W2(θ;m,ω) = −
∑
i∈N

∑
j 6=i

(
(θj − µ)− ωij(mij − µ)

)2
.

Then, by using the expression of the welfare function in stage 1 given in (6), we obtain

W1(ω) = −
∫

Θ
p(θ)

[ ∫
M
f(m|θ, ω)

∑
i∈N

∑
j 6=i

(
(θj − µ)2 + ω2

ij(mij − µ)2

− 2ωij(θj − µ)(mij − µ)
)
dm

]
dθ −

∑
i∈N

∑
j∈Ni(g)

c(ωij)

= −
∑
i∈N

∑
j∈Ni(g)

[
σ2 + ω2

ij(σ
2 + ψ2

ij)− 2ωijσ
2 + c(ωij)

]
=
∑
i∈N

∑
j∈Ni(g)

[
σ2(ωij − 1)− c(ωij)

]
.

Note that the function W1(ω) is concave in each ωij for j ∈ Ni(g). Then, an interior solution to

the planner’s problem is characterized by

∂W1(ω̂)/∂ωij = σ2 − c′(ω̂ij) = 0 ⇔ c′(ω̂ij) = σ2
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for each i ∈ N and each j ∈ Ni(g), as stated.

Proof of Proposition 2. Consider a network g ∈ G and an agent i ∈ N . For a given information

profile ω and a given message vector mi, agent i’s expected utility in stage 2, Ui,2, is given by

Ui,2(α;ω,mi) =− (1− r)
∑
k 6=i

E
[(

(θk − µ)− ωik(mik − µ)
)2 ∣∣mi, ω

]
− r

n− 1

∑
k 6=i

∑
j 6=k

E
[(

(θj − µ)− ωkj(mkj − µ)
)2 ∣∣mi, ω

]
.

By computing the conditional expectations in the expression above, we obtain

Ui,2(α;ω,mi) =− (1− r)
∑
k 6=i

[
σ2(1− ωik) + ω2

ik(mik − µ)2 − 2ω2
ik(mik − µ)2

]
− r

n− 1

∑
k 6=i

∑
j 6=k,i

[
σ2(1− ωij) + ω2

kj

σ2(1− ωijωkj)

ωkj
− 2σ2ωkj(1− ωij)

]
− r

n− 1

∑
k 6=i

σ2 1− ωki

ωki
.

Therefore, by plugging the expression above for Ui,2(α;ω,mi) into the definition of agent i’s

expected utility in stage 1 given in (5), and by using the results about agent i’s posteriors stated

in (2) , (3), and (4), we obtain

Ui,1(ω) =− (1− r)σ2
∑
k 6=i

(1− 2ωik)

− r

n− 1
σ2
∑
k 6=i

∑
j 6=k,i

[1− ωij − ωkj + ωijωkj(2− ωkj)]

− r

n− 1
σ2
∑
k 6=i

1− ωki

ωki
−

∑
j∈Ni(g)

c(ωij).

Take a given agent j ∈ Ni(g). It can be verified that the function Ui,1(ω) is convex in ωij ∈ (0, 1).

Then, the following condition characterizes agent i’s optimal choice of her information decision

with respect to her neighbor j (when each other agent chooses her optimal information decision

as well):

∂Ui,1(ω∗)/∂ωij =2(1− r)σ2 +
r

n− 1
σ2

∑
k∈Nj(g)\{i}

[
1− ω∗kj(2− ω∗kj)

]
− c′(ω∗ij) = 0

⇔ c′(ω∗ij) = 2(1− r)σ2 +
r

n− 1
σ2

∑
k∈Nj(g)\{i}

[
1 + ω∗kj(ω

∗
kj − 2)

]
,

as stated.
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[9] Calvó-Armengol, A., de Mart́ı, J., and A. Prat (2011): “Communication and Influ-

ence,” mimeo.

[10] Chakraborty, A., and R. Harbaugh (2007): “Comparative Cheap Talk,” Journal of

Economic Theory, 132, 70-94.

[11] Cohan, J. (2002): “ ‘I Didn’t Know’ and ‘I was Only Doing My Job’: Has Corporate

Governance Careened Out of Control? A Case Study of Enron’s Information Myopia,” Journal

of Business Ethics, 40, 275-299.

[12] Compte, O., and A. Postlewaite (2004): “Confidence-Enhanced Performance,” Amer-

ican Economic Review, 94(5), 1536-1557.

28



[13] Dewan T., and D. P. Myatt (2008): “The Qualities of Leadership: Direction, Commu-

nication, and Obfuscation,” American Political Science Review, 102, 3, 351-368.

[14] Di Tella, R., Galiani, S., and E. Schargrodsky (2007): “The Formation of Beliefs:

Evidence from the Allocation of Land Titles to Squatters,” Quarterly Journal of Economics,

122(1), 209-241.

[15] Galeotti, A., Ghiglino, C., and F. Squintani (2011): “Strategic Information Trans-

mission in Networks,” mimeo.

[16] Eichennwald, K. (2005): Conspiracy of Fools: A True Story. New York, Broadwaybooks.

[17] Hagenbach, J., and F. Koessler (2010): “Strategic Communication Networks,” Review

of Economic Studies, 77, 1072-1099.

[18] Hellwig, C., and L. Veldkamp (2009): “Knowing what Others Know: Coordination

Motives in Information Acquisition,” Review of Economic Studies, 76, 1, 223-251.

[19] Hersh, S. (2004): Chain of Command. New York, HarperCollins Publishers.

[20] Isikoff, M., and D. Corn (2007): Hubris. New York, Three Rivers Press.

[21] Jackson, M. O., and A. Wolinsky (1996): “A Strategic Model of Social and Economic

Networks,” Journal of Economic Theory, 71, 44-74.

[22] Janis, I. (1972): Victims of Groupthink: Psychological Studies of Policy Decisions and

Fiascoes, Boston, Houghton Miffin.
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