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Abstract
This paper develops a model of costly information acquisition by agents who are connected

through a network. For a exogenously given network, each agent decides first on information
acquisition from his neighbors and then, after processing the information acquired, takes an ac-
tion. Each agent is concerned about the extent to which other agents align their actions with the
underlying state. A new equilibrium notion, which is in the spirit of perfect Bayesian equilib-
rium, is proposed to analyze information acquisition decisions within networked groups. This
equilibrium notion allows each agent to compute, when deciding about information acquisi-
tion, the extent to which changes in his information acquisition decision will affect his own
perception of future expected payoffs. Agents anticipate and incorporate such changes in their
information acquisition decisions. Both the efficient and the equilibrium information acquisi-
tion profiles are characterized and the compatibility between them is related to the density of
the network.
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1. Introduction

In many economic and social settings, agents acquire information from others in order to
improve their knowledge of the underlying fundamentals. For example, a researcher acquires
information from colleagues in order to improve his knowledge of a certain scientific problem
and of the possible alternatives to address it. Also, it is common that investors in a new sector
acquire information from other investors to obtain more accurate predictions of the economic
variables affecting the profitability of the sector. Most of these information acquisition activities
often take place through networks.

Despite the widespread use of information acquisition within networked groups, little is
known about this phenomenon. How do agents interact with respect to their information acqui-
sition decisions when they are connected through a network? How is the compatibility between
efficient and equilibrium information acquisition related to the network architecture? To address
these questions, this paper provides a game theoretical framework that treats the transmission
of information as a result of a Bayesian belief revision process.

In this model, the architecture of the network is exogenously given and common knowledge,
and agents are engaged in a two-stage game. In the first stage, each agent chooses at a cost the
amount of information that he acquires from his neighbors. In the second stage, each agent
chooses a payoff-relevant action. Agents are able to receive information only from their direct
neighbors, so that I do not consider the network effect which forms an essential part of most of
the analyses of communication networks.

This model is built on the assumption that, when the agents choose the amount of infor-
mation that they acquire, they correctly anticipate and compute the extent to which the newly
acquired information will change their perceptions of their own future expected payoffs. This
assumption constitutes the crucial sequential rationality requirement of the equilibrium concept
proposed in this paper, information acquisition equilibrium (IAE). The IAE concept requires
that each agent be sequentially rational in both stages of the underlying game and that posterior
beliefs be consistent, according to Bayes’ rule, with the strategies over messages chosen in the
first stage. Thus, IAE requirements seem analogous to those of perfect Bayesian equilibrium.
In fact, IAE departs from perfect Bayesian equilibrium only in the way in which the agents
compute their expected payoffs in the first stage. In an IAE, an agent’s expected payoff in the
first stage is specified by discounting his expected payoffs at the various information sets in the
second stage according to the combination of strategies over messages chosen by the agents.
Given this specification, when an agent changes his information acquisition choice at the first
stage, he is able to compute the extent to which his own perception of his payoff in the second
stage will change.

The motivation for this key sequential rationality requirement of IAE has a behavioral na-
ture and clearly contrasts that of perfect Bayesian equilibrium, the equilibrium concept usually
proposed to analyze information revelation decisions. In signaling1 and cheap talk2 models, an

1See, e.g., Spence [20], Rothschild and Stiglitz [19], and Wilson [23].
2The seminal work on cheap talk is due to Crawford and Sobel [11].
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agent who decides about information revelation cares about the action that he induces the re-
ceiver to take rather than about any changes on his own posterior beliefs.3 However, when an
agent decides about acquiring new information, it seems reasonable to assume that he antici-
pates the self-induced changes on his posterior beliefs and the extent to which such changes
will affect his perception of own future payoffs. Then, it seems appropriate to consider that, at
the date when the agent decides about information acquisition, he cares about both the induced
optimal actions and the anticipated perception of his own future payoffs. The nature of the prob-
lem of information acquisition seems different from that of information revelation. This paper
proposes an equilibrium concept suitable to incorporate into the agents’ rationality the fact that
they anticipate the role of the acquired information in shaping their own posterior beliefs and,
accordingly, their own perceptions of future expected payoffs. For the two-agent version of the
underlying game, we can simplify an agent’s expected payoff in the first stage as it is specified
in an IAE so as to obtain the expected payoff used in a perfect Bayesian equilibrium. This shows
that both concepts of equilibrium coincide for the two-agent case. However, they turn out to be
different equilibrium concepts for the case with more than two agents.

Regarding preferences, I adopt a particular choice which seems reasonable to study infor-
mation acquisition within groups. In this model, a sender cannot decide about the amount of
information that he discloses to his neighbors. Therefore, strategic interactions over actions are
ruled out. Each agent’s payoff depends on the appropriateness of his own action to the underly-
ing state. In addition, an agent’s payoff decreases with the distance between the others’ actions
and the state—this is the way in which positive “informational spillovers” are formalized. Also,
to render the analysis tractable, I assume that payoffs are quadratic.

The main motivation for the assumed preferences comes from organizations or groups where
their members face similar problems which they must solve independently, and where each of
them wishes to solve his problem but also values that the other agents solve theirs too. Clearly,
in this framework no agent has incentives to refuse to transmit his information to others so
that the analysis of information revelation decisions is irrelevant. Then, we can aptly restrict
attention to information acquisition decisions. Examples of such groups or organizations are
those of a research department, where its members pursuit independently similar innovations,
or a group of investors in a new sector, where the profitability of the sector increases as more
investors choose investment strategies appropriate to the underlying state.

To study the efficiency properties of information acquisition through a network, I consider
that the planner seeks to maximize the sum of the ex ante payoffs of the agents. Proposition 1
provides the following necessary and sufficient condition for an information acquisition profile
to be efficient: it is efficient to acquire full information from a given neighbor if and only if the
cost of information acquisition does not exceed the variance of the neighbor’s type. Otherwise,
it is efficient to acquire no information at all from that neighbor. Not surprisingly, this result
gives us an efficiency criterion in terms of the marginal cost and the marginal benefit derived

3In fact, the study of posterior beliefs and perceptions of the agent who decides about information transmission
is not the purpose of these sender-receiver models since they assume that the receiver is completely informed about
the underlying state.
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from information acquisition.
The second result of this paper characterizes an agent’s best response information acqui-

sition strategy with respect to a given neighbor. Proposition 2 shows that the incentives of an
agent to acquire information from a neighbor increase with the amount of information that the
rest of neighbors of that neighbor acquire from him.

Both the sequential rationality requirement at the first stage of the underlying game imposed
by the IAE notion and the presence of positive informational spillovers are crucial to obtain
the result that agents wish to coordinate their information acquisition decisions. The following
example illustrates the forces behind this result. Consider three agents such that agent 1 is linked
to agent 2 and agent 2 is linked to agent 3. We are then encouraged to ask what forces cause
agent 1’s decision about information acquisition from agent 2 to depend on agent 3’s choice
about information acquisition from agent 2. Agent 1 knows the strategy over messages that
agent 2 adopts with respect to agent 3 (which is indeed chosen by agent 3). However, so long
as he does not acquire full information from agent 2, he is still uncertain about agent 2’s type.
As a consequence, he is also uncertain about the particular message that agent 2 sends to agent
3. In other words, the information that agent 1 acquires from agent 2 improves his knowledge
about 2’s private information but also about the extent to which agent 3 acquires information
from agent 2. Therefore, this information also changes his perception of the extent to which
agent 3 is able to solve his problem. Then, by changing his information acquisition decision
with respect to agent 2, agent 3 changes the relation between agent 1’s information acquisition
choice with respect to agent 2 and agent 1’s own (anticipated) perception of agent 3’s most
preferred action. This affects agent 1’s information acquisition choice with respect to agent 2

given that (i) information acquisition is costly, (ii) agent 1 cares about agent 3’s action, and (iii)
agent 1 is risk averse with respect to agent 3’s action.

Regarding its welfare implications, this paper provides conditions in terms of a precise mea-
sure of the network density—the minimum degree of the network—under which efficient infor-
mation acquisition can be either reached in an IAE or not. These results, provided by Corollaries
1 and 2, suggest that it is more likely that the IAE be efficient when the least connected agent is
highly connected relative to the size of the entire group.

To the best of my knowledge this paper is the first to conduct an analysis of strategic infor-
mation acquisition decisions and their welfare implications for networked groups. For networks
that allow for communication among connected agents, Jackson and Wolinsky [15], and Bala
and Goyal [4] pioneered the study of the compatibility between efficient and equilibrium net-
works.4 For tractability reasons, most of this literature do not consider the information trans-
mission problem in terms of a Bayesian belief revision process. Instead, certain given relations
are assumed between an agent’s payoff and the number of agents whose information he can
access. By doing so, the effects of information on payoffs are exogenously modeled and the
role of information in shaping beliefs is ignored.

4The line of research on communication networks has been pursued further in different contexts, among others,
by Suk-Young Chwe [21], Calvó-Armengol [7], Bloch and Dutta [5], Calvó-Armengol and de Martí [8], and
Calvó-Armengol and Jackson [9].
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Recently, some papers have analyzed communication networks using Bayesian belief revi-
sion processes to model information transmission. Calvó-Armengol and de Martí [8] consider
a framework where agents communicate through a given network as a result of a Bayesian
belief revision process that takes place in successive rounds. The main differences between
their approach and that followed in this paper are: (i) they do not consider endogenous in-
formation transmission decisions, and (ii) the class of preferences that they assume include
a second-guessing coordination motive. Hagenbach and Koessler [13] consider a model where
each agent decides whether or not to reveal his private information to the others before choosing
his own action. The choices on information revelation determine endogenously a communica-
tion network. The main difference with this paper is in the fact that they study information
revelation decisions. Consequently, they use perfect Bayesian equilibrium as solution concept.
Perfect Bayesian equilibrium is arguably an appropriate equilibrium concept for that problem.
As a result, they do not obtain strategic interactions over information transmission decisions at
equilibrium. This marks a sharp contrast with the results of this paper.

The rest of the paper is structured as follows. The model and the notions of equilibrium and
efficiency are introduced in Section 2. Section 3 characterizes both the set of efficient and the
set of equilibrium information acquisition profiles, and presents the results that relate the com-
patibility between equilibrium and efficiency to the network density. In Section 4, I discuss the
robustness of the model. Formal justifications are provided by considering two perturbations
of the model: one where types are drawn according to a Normal distribution and each agent
receives a signal consisting of the true type plus some noise; the other with non-linear informa-
tion acquisition costs. Section 5 concludes with a discussion of the results. The proofs of all the
propositions are grouped together in the Appendix.

2. The Model

2.1. Network Notation

There is a finite set of agents N := {1, . . . ,n}, with n ≥ 2. The shorthand notation5 i j de-
notes the subset of N , of size two, containing agents i and j , which is referred to as the link
i j . A communication network g is a collection of links where i j ∈ g means that i and j are
directly linked and able to acquire information from each other under network g . Let G de-
note the set of all possible networks on N . For a network g ∈G , the set of agent i ’s neighbors
is Ni (g ) := {

j ∈ N : i j ∈ g
}

and the number of his neighbors is ni (g ) := ∣∣Ni (g )
∣∣. Finally, let

δ(g ) := mini∈N ni (g ) and ρ(g ) := maxi∈N ni (g ) denote, respectively, the minimum and the
maximum degree of network g . Both δ(g ) and ρ(g ) can be understood as measures of the ex-
tent to which agents are connected in network g .

The architecture of the network itself is exogenously given and common knowledge.

2.2. Information Structure, Actions, and Payoffs

Given a network g ∈ G , agents are engaged in a game that is played in two consecutive

5The network notation presented here was developed by Jackson and Wolinsky [15].
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stages numbered 1 and 2. In stage 1, each agent i ∈ N decides the amount of information that he
acquires from each agent in his neighborhood Ni (g ). In stage 2, each agent chooses an action
using the information that he has acquired from his neighbors in stage 1.

The initial private information of each agent i ∈ N is described by his type ti , an element
of Ti := [0,1]. For each variable, set, or function, denote its profile over all agents by the corre-
sponding bold letter and its profile over all agents except that of agent i with the corresponding
letter with subscript −i .6 A state of the world is denoted t := (ti )i∈N and the state space is7

T :=×i∈N Ti = [0,1]n .8 Thus, agent i ’s type is the respective coordinate ti of the actual state t.
All aspects of this game, except t, are common knowledge. Clearly, this information structure
exhibits complementarities in the sense that two distinct agents improve their knowledge about
the underlying state by sharing their pieces of private information. In particular, the true state is
always obtained by combining the pieces of private information of all the agents.9

Although the proposed information structure relates generally to situations with informa-
tional complementarities, the main motivation of this model comes from situations where agents
face independently a common (or similar) decision problem with several independent “aspects”
so that solving the problem requires to solve the various aspects. Each agent is an “expert” in
one aspect so that the knowledge about how to solve the problem is improved by information
sharing.

In stage 2, each agent chooses a payoff-relevant action. An action for agent i is an n-
coordinate vector ai ∈ Ai := [0,1]n . Thus, the action space available to each agent i ∈ N coin-
cides with the state space, Ai :=T = [0,1]n . The idea here is to think of an action as a collection
of all the independent steps that an agent must take in order to solve his decision problem (one
step for each aspect of the problem). Let ai k ∈ [0,1] denote the k-th coordinate of the action
vector ai taken by agent i , i.e., ai := (ai k )k∈N . Intuitively, ai k summarizes the action taken by
agent i with respect to the k-th aspect of the decision problem.

Under the chosen preferences, strategic interactions over actions are ruled out. Each agent
wishes, on the one hand, to match his own action with the true state and, on the other hand, is
concerned about the extent to which the other agents align their actions with the true state. I
call this second motive the team concern and interpret it as a positive “informational spillover”
or externality affecting the organization/group. I am assuming that the organization receives
higher benefits, either monetary or in terms of prestige, as more of its members perform “well”
in their independent tasks. Thus, contingent on the performance of the entire organization, each
member is rewarded in terms of reputation or monetary payments. For example, consider a

6This notation is standard. Specifically, for each set Yi with generic element yi ∈ Yi , for some agent
i ∈ N , write Y to denote the Cartesian product ×i∈N Yi , and, accordingly, write y := (yi )i∈N ∈ Y and y−i :=
(y1, . . . , yi−1, yi+1, . . . , yn) ∈ Y−i . Likewise, for each family of functions hi : Y → Z , write h(y) := (hi (yi ))i∈N and
h−i (y−i ) := (h j (y j )) j 6=i .

7The proposed state space is similar to those used in models on multidimensional cheap talk. See, e.g.,
Chakraborty and Harbaugh [10], and Levy and Razin [17].

8For a set B and an integer l , write B l to denote the l -fold Cartesian product of B .
9Jiménez-Martínez [16] proposes an analogous information structure to study a two-agent information sharing

problem.
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set of investors choosing their investment strategies in a new sector, where the profitability of
the sector increases with the number of investors that choose a “good” investment strategy.
Consequently, each investor cares about the extent to which the rest of investors align their
actions with the true state. Of course, a broad class of applications can be covered by this model
when one thinks of the team concern in terms of benefits derived to each agent from the prestige
of the organization.

With regards to the team concern, let r ∈ [0,1] be a scalar parameter that measures the
extent to which each agent cares about the alignment of the other agents’ actions with the
true state. Let ‖ · ‖ denote the Euclidean norm. The payoff to agent i is given by the function
Ui :A×T × [0,1] →R defined by

Ui (a,t;r ) :=−(1− r )‖t−ai‖2 − r

n −1

∑
j 6=i

‖t−a j‖2. (1)

The first term in equation (1) above is the quadratic loss in the distance between agent i ’s own
action and the true state. The second term is the team concern, i.e, the payoff loss derived from
the discrepancy between the other agents’ actions and the true state. Parameter r gives us the
weight of such a team behavior motive. Notice that the payoff of each agent is strictly decreasing
with respect to the (Euclidean) distance between the action that he chooses and the true state.
Thus, each agent has incentives to acquire information since more information allows for actions
better suited to the underlying state. Of course, for each r ∈ (0,1], the specified preferences
represent common interests for all agents. Finally, I am assuming that the team concern has the
form of a positive informational spillover in the sense that, for each i ∈ N , Ui (a,t;r ) strictly
decreases with ‖t−a j‖, for each j 6= i .

Although the proposed payoffs are very specific, they can be viewed as a second-order
approximation of a more general class of convex preferences. The assumptions imposed on
preferences make the analysis tractable. More importantly, this class of preferences allows us to
work with all the relevant ingredients that describe an environment without strategic interactions
over actions and with external positive effects. The fact that strategic interactions over actions
are absent will enable us to focus on the analysis of how the agents interact strategically only
over their information acquisition decisions.

2.3. The Information Transmission Process

There is a set M := [0,1] of feasible messages available to each agent for information trans-
mission purposes. Thus, the message space coincides with the type space of each agent, and a
message m ∈ M sent by agent i may be interpreted as a statement that his type is ti = m.

At the beginning of stage 1, each agent i ∈ N chooses the message that each of his neigh-
bors j ∈ Ni (g ) sends to him.10 All messages are sent simultaneously. Write m j i ∈ M to denote
a generic message sent from agent j to agent i , mi := (m j i ) j 6=i to denote a combination of
messages received by agent i , andm := (mi )i∈N ∈ M n(n−1) to denote a message profile.

10Formally, an agent chooses the message strategy that each of his neighbors adopts with respect to him. In this
sense, this choice may be interpreted as a decision about the quality of a message service.

7



In terms of strategies, each agent chooses the degree of informativeness of the message
strategy that each of his neighbors adopts with respect to him. As it will be specified below,
a scalar parameter xi j ∈ [0,1] is used to summarize the degree of informativeness of agent
j ’s message strategy with respect to agent i . Thus, for each j ∈ Ni (g ), agent i must choose
an information acquisition parameter xi j and we interpret this choice as agent i acquiring an
amount of information xi j from agent j .

After each agent has chosen the information acquisition parameter for each of his neigh-
bors, a state t is randomly drawn from T according to a continuous joint density q(·) and each
agent learns the corresponding type.11 Each type ti is drawn from Ti according to a (common)
probability distribution, with continuous marginal density f (·), supported on [0,1]. I assume
that the agents’ types are independent so that a state t is drawn from T according to density
q(t) :=∏

i∈N f (ti ). Let us denote the mean and the variance of each agent i ’s type, respectively,
by µ := ∫ 1

0 f (ti )ti d ti and by σ2 := ∫ 1
0 f (ti )(ti −µ)2d ti .

I can now be more specific about the information acquisition parameter and its interpre-
tation. For i ∈ N and j ∈ Ni (g ), xi j is the weight parameter of a linear combination between
a totally non-informative (pooling) and a totally informative (completely separating) message
strategy. Formally, given the information acquisition parameter xi j , agent j ’s type t j sends
message m j i ∈ M to agent i according to the function β j i : M ×T j × [0,1] → [0,1] defined as

β j i (m j i |t j ; xi j ) := (1−xi j ) f (m j i )+xi j 1(m j i |t j ), (2)

where 1 : M ×T j → [0,1] is the indicator function defined, for each (m j i , t j ) ∈ M ×T j , i 6= j , by
(i) 1(m j i |t j ) = 1 if m j i = t j , and (ii) 1(m j i |t j ) = 0 if m j i 6= t j .

For xi j ∈ [0,1], i , j ∈ N , i 6= j , β j i (·; xi j ) specifies a message strategy for agent j with respect
to agent i , parameterized by xi j . Therefore, β j i (m j i |t j ; xi j ) is the density associated to type t j

sending message m j i to agent i , given that agent i chooses information acquisition parameter
xi j . Thus, xi j can be interpreted as agent i choosing quality xi j for the message service through
which he receives information from agent j about his type (or simply as agent i acquiring
amount xi j of information from agent j ).

Since the message space coincides with the type space of each agent, density f can be
evaluated meaningfully at each message m ∈ M . Therefore, expression (2) above specifies an
appropriate class of message strategies for information transmission purposes.

Each agent i ∈ N incurs a cost c > 0 (in terms of time, effort, or money) for each unit of
information that he acquires from each of his neighbors. Thus, the cost function is assumed to be
linear. The described two-stage game typically has multiple equilibria. Under the assumptions
imposed on payoffs, the objective problem of an agent with respect to information acquisition
is not concave. These assumptions also imply that agents make corner choices at equilibrium.

The class of message strategies allowed for is admittedly very specific. Three points should
be made in defense of this choice. The first is that it captures quite conveniently, and without

11In the present context, it would be equivalent to assume that agents learn their private information before they
decide about information acquisition.
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loss of generality for our purposes, the extent to which an agent j transmits his information to
another agent i : (i) if xi j = 0, then agent j reveals no information at all (i.e., he pools), (ii) if
xi j = 1, then agent j fully reveals (i.e., he completely separates), and (iii) if xi j ∈ (0,1), then
agent j reveals partially (i.e., he semi-separates). Furthermore, the relation between the degree
of informativeness of agent j ’s message strategy with respect to agent i and xi j is continuous
and strictly increasing on the interval [0,1].12

The second point is that, as it will be discussed in Subsection 4.1, the assumed message
strategies induce posterior beliefs whose (conditional) mean and variance behave in a way to-
tally analogous to those obtained by assuming that the information transmission process is de-
scribed by a Normal signal consisting of the true type plus some noise. This way of modeling
information transmission is standard in the recent literature on the social value of information
and on communication networks.13 Thus, an interesting class of information transmission pro-
cesses falls qualitatively within this model.

The third point is that the underlying game where the agents decide about information acqui-
sition has typically multiple equilibria. This makes problematic any analysis of welfare impli-
cations. The proposed message strategies have a linear structure which, together with the linear
structure assumed for preferences and for the cost function, mitigates crucially this problem.
This makes tractable the analysis of social efficiency. This paper aims at studying the com-
patibility between equilibrium and efficient information acquisition in networks. The chosen
message strategies, together with the assumptions on preferences over actions and the linearity
assumption on the cost function, allows us to concentrate on this question.

Let xi := (xi j ) j 6=i ∈ Xi := [0,1]n−1 denote an information acquisition strategy for agent i and
let X := ×i∈N Xi be the set of all information acquisition profiles. For a given network g ∈ G ,
each agent i ∈ N is able to acquire information only from his neighbors. So, I shall set xi j = 0

for j ∉ Ni (g )∪ {i } throughout the paper.
I turn now to describe how the posterior beliefs of the agents are formed. For two agents

i , j ∈ N , i 6= j , let λi j : T j × M × [0,1] → [0,1] denote the density corresponding to agent i ’s
posterior beliefs over agent j ’s type, given the information acquisition parameter xi j . Agents
use Bayes’ rule to update their priors.14 Bayes’ rule imposes

λi j (t j |m j i ; xi j ) =β j i (m j i |t j ; xi j ) f (t j )
/∫ 1

0
β j i (m j i |τ; xi j ) f (τ)dτ. (3)

Since types are independent, an agent can update his beliefs over states by doing separately
the corresponding Bayesian belief revision over each of the other agents’ types. Thus, agent i ’s

12The fact that the amount of information transmitted by an agent j to his neighbor i is completely described
by parameter xi j ∈ [0,1] enables us to model the information possessed by each agent as a perfectly divisible
good. Thus, using the proposed class of message strategies, we avoid the complicated problem that results when
information is modeled as an indivisible good, as successfully studied by Allen [1], [2].

13See, e.g., Angeletos and Pavan [3], and Calvó-Armengol and de Martí [8].
14As mentioned earlier, xi j = 0 for j ∉ Ni (g )∪ {i }, i ∈ N , so that each agent can indeed use only his neighbors’

message strategies to update his beliefs.
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posterior beliefs over T can be described by the function λi :T ×M n−1×Xi → [0,1], defined as

λi (t|mi ; xi ) := ∏
j 6=i

λi j (t j |m j i ; xi j ).

Let Q be the set of all densities on T so that λi ∈Q for each agent i .

2.4. Information Acquisition Equilibrium and Efficient Information Acquisition

Let us now introduce the notions of equilibrium and efficiency.
It is useful first to specify action strategies. An action strategy for agent i with respect to

coordinate k 6= i of the action space is a function αi k : M → [0,1] that associates his choice
of action over coordinate k, αi k (mki ) ∈ [0,1], to the message that he receives from agent k,
mki ∈ M . Since types are independent and all messages are sent simultaneously, an agent’s
choice of action over a particular coordinate depends only on the message that he receives
from the expert in that coordinate, as specified. Likewise, an action strategy for agent i with
respect to coordinate i is a function αi i : Ti → [0,1]. Clearly, an agent’s choice of action over
the coordinate in which he is the expert depends only on his own initial private information.
An action strategy for agent i is then a function αi : Ti ×M n−1 → Ai defined as αi (ti ,mi ) :=
(αi i (ti ), (αi k (mki ))k 6=i ) for each (ti ,mi ) ∈ Ti ×M n−1. Let ∆i be the set of all action strategies
for agent i .

The expected payoff of agent i in stage 2 is given by a function Vi ,2 : Ai ×∆−i ×Q ×Ti ×
M n(n−1) → R defined, given his own type ti , a message profile m = (mi ,m−i ), his own action
ai =αi (ti ,mi ), a combination of action strategies followed by the other agents α−i , and his own
posterior beliefs about the true state λi , by15

Vi ,2(ai ,α−i ,λi ; ti ,m) :=
∫

t−i∈T−i

λi (t|mi ; xi )Ui
(
αi (ti ,mi ),α−i (t−i ,m−i ),t;r

)
d t−i , (4)

where α−i (t−i ,m−i ) = (α j (t j ,m j )) j 6=i .
For i ∈ N and λi ∈Q, let the function α̂i (·;λi ) : Ti ×M n−1 → Ai defined by α̂i (ti ,mi ;λi ) :=

argmaxai∈Ai Vi ,2(ai ,α−i ,λi ; ti ,mi ,m−i ) for each (ti ,mi ) ∈ Ti ×M n−1 be agent i ’s optimal ac-
tion strategy given his posterior beliefs λi .16 For the assumed preferences, the optimal action
strategy of an agent i depends on the information that he acquires (which endows him with
beliefs λi ) but not on the action strategies followed by the rest of agents, α−i . As discussed
earlier, strategic interactions over actions are absent in this model.

The expected payoff of agent i in stage 1 is given by a function Vi ,1 :∆×Q →R defined, for

15Let dt :=∏
k∈N d tk and d t−i :=∏

k 6=i d tk for i ∈ N .
16An agent’s optimal action strategy is nothing but an action strategy that satisfies an additional requirement (it

maximizes the agent’s expected utility in stage 2 given certain posterior beliefs). Therefore, as specified for each
action strategy, for i ∈ N and λi ∈Q, let α̂i (ti ,mi ;λi ) := (α̂i i (ti ), (α̂i k (mki ;λi k ))k 6=i ) for each (ti ,mi ) ∈ Ti ×M n−1.
Since types are independent and messages are sent simultaneously, agent i ’s optimal action strategy over the k-th
coordinate of the action space depends only on the message mki that he receives from agent k, given his posterior
beliefs λki .
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each given action strategy profile α and posterior beliefs λi , by

Vi ,1(α,λi ) :=
∫
t∈T

q(t)
∫ 1

0
· · ·

∫ 1

0

∏
k∈N

∏
j 6=k

βk j (mk j |tk ; x j k )×

×Vi ,2(αi (ti ,mi ),α−i ,λi ; ti ,m)dmk j dt− c
∑

k∈Ni (g )
xi k .

(5)

Equation (5) above gives us agent i ’s objective function corresponding to the sequential ra-
tionality requirement in stage 1 for the equilibrium concept proposed in this paper, IAE. With
this specification agent i ’s posterior beliefs are taken into account in his expected utility at
stage 1 through each Vi ,2(αi (ti ,mi ),α−i ,λi ; ti ,m), for the various information sets (ti ,m) ∈
Ti ×M n(n−1) at stage 2. The idea here is to recognize the role of acquired information in shap-
ing agent i ’s perception of his own future payoffs, and to incorporate such role into his optimal
decision in the stage where he decides about information acquisition. Using the specification
in (5), we see that changes in agent i ’s information acquisition choice in stage 1 will change
his own perception of his payoff in stage 2. Agent i is then able to anticipate and compute the
extent to which such perception changes. The IAE concept departs from the perfect Bayesian
equilibrium of the underlying game only in that specification given in equation (5) of expected
payoffs in stage 1.17 In a perfect Bayesian equilibrium an agent considers in stage 1 only prior
beliefs and cares about the messages and the actions chosen by everyone rather than about the
effects induced on his own posterior beliefs. This makes it an equilibrium notion suitable for
signaling and cheap talk games, where the relevant decisions are about information revelation.
However, if we wish to recognize the role of newly acquired information in shaping posterior
beliefs and induced perceptions of future payoffs (and to consider that agents are ex-ante aware
of such effects), then the payoff specification in (5) seems more suitable to analyze information
acquisition decisions.

In the definition of IAE below, condition (i) requires that each agent’s type choose an ex-
pected payoff maximizing action in stage 2, taking as given the action strategies followed by
the others and the information acquisition strategies chosen by everyone. Condition (ii) imposes
each agent to choose optimally his information acquisition strategy in stage 1, which gives him
his own posterior beliefs, taking as given the information acquisition strategies chosen by the
rest of agents. Condition (iii) simply requires that each agent use Bayes’ rule to update his priors
over states.

Definition 1. Given a network g ∈G , an Information Acquisition equilibrium (IAE) is a triple

17For the two-agent version of the underlying game, the expression for agent i ’s expected utility in stage 1 in
(5) can be simplified, upon substitution of the expression in (4), so as to obtain the equivalent expression

Vi ,1(α,λi ) =
∫
t∈T

q(t)
∫ 1

0

∫ 1

0
βi j (mi j |ti ; x j i )β j i (m j i |t j ; xi j )Ui (αi (ti ,m),α j (t j ,m),t;r )dm j i dmi j dt−cxi j .

This is the expected payoff specification in stage 1 that one uses in the perfect Bayesian equilibrium concept for the
underlying two-stage game. Therefore, IAE coincides with perfect Bayesian equilibrium for the two-agent version
of the game. However, such a simplification cannot be obtained for the case with more than two agents.
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(α∗,λ∗,x∗) such that, for each i ∈ N :

(i) α∗
i = α̂i (·;λ∗

i ). (SR2)

(ii) For each λi ∈Q,

Vi ,1(α∗,λ∗
i ) ≥Vi ,1(α̂i (·;λi ),α∗

−i ,λi ). (SR1)

(iii) For each (t j ,m j i ) ∈ T j ×M such that j 6= i ,

λ∗
i j (t j |m j i ; x∗

i j ) = (1−x∗
i j ) f (t j )+x∗

i j 1(m j i |t j ) with x∗
i j = 0 for j ∉ Ni (g )∪ {i }. (BU)

For an agent i ∈ N , say that the information acquisition strategy xi ∈ Xi induces beliefs
λi ∈ Q if λi is obtained from xi using condition (BU) in Definition 1 above. It formalizes the
way in which information is transmitted between two agents connected through a link by as-
suming that posterior beliefs are consistent with Bayesian updating. To state Bayes’ rule as
expressed in condition (BU) above, one must combine equations (2) and (3). Say that the infor-
mation acquisition profile x ∈X induces the belief profile λ ∈Qn if each xi , i ∈ N , induces the
corresponding λi . So, if (α∗,λ∗,x∗) is an IAE, then x∗ induces λ∗.

One may ask whether the fact that agents communicate through a network may lead to the
result that an agent’s optimal information acquisition strategy, as described by conditions (SR2)
and (SR1) in Definition 1 above, depends on other agents’ information acquisition strategies.
Proposition 2 gives an affirmative answer to that question so that this model enables us to
analyze strategic interactions only over information acquisition decisions.

I now describe the efficiency benchmark that we shall use to gauge the efficiency properties
of IAE. The welfare measure proposed in this paper is the sum of the expected payoff of all the
agents in stage 1. Here we require that agents choose optimally their action strategies in stage 2
and then compare information acquisition profiles. Hence, we consider the possibility that the
planner changes the information acquired by the agents, who will then pay the corresponding
new cost of information acquisition and use such information optimally to choose their actions.
As indicated earlier, the expected utility of an agent in stage 1 incorporates his own percep-
tion of his expected utility in stage 2 using the posterior beliefs resulting from his information
acquisition decisions. In contrast, the ex-ante welfare function is evaluated from the planner’s
perspective. Therefore, the agents’ posterior beliefs are not considered in the proposed welfare
function in stage 1. Formally,

Definition 2. Given a network g ∈ G and an information acquisition profile x ∈X that in-
duces a belief profile λ ∈ Qn , the welfare function evaluated in stage 2 is the function W2 :

T ×M n(n−1) ×Qn →R defined by

W2(t,m;λ) := ∑
i∈N

Ui
(
α̂i (ti ,mi ;λi ), α̂−i (t−i ,m−i ;λ−i ),t;r

)
,

where α̂−i (t−i ,m−i ;λ−i ) := (α̂ j (t j ,m j ;λ j )) j 6=i .
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Definition 3. Given a network g ∈G , x ∈X is an efficient information acquisition profile if it
induces a belief profile λ that maximizes the welfare function evaluated in stage 1, W1 :X→R,
defined by

W1(x) :=
∫
t∈T

q(t)
∫ 1

0
· · ·

∫ 1

0

∏
k∈N

∏
j 6=k

βk j (mk j |tk ; x j k )W2(t,m;λ)dmk j dt

− c
∑

i∈N

∑
k∈Ni (g )

xi k .
(6)

2.5. A Two-Agent Example

As an antidote to the complexity of the ingredients of the previous subsections, I now work
out an example for the particular case where n = 2 to illustrate the model. Consider N = {1,2}

and the network g = {12} so that each agent is able to acquire information from the other.
Following the development of the previous subsections, the type space of the agents is T1 =
T2 = [0,1], and the state space is T = [0,1]× [0,1] with typical element t= (t1, t2), where t1 ∈ T1

and t2 ∈ T2. The action space of the agents is A1 = A2 =T = [0,1]×[0,1] and an action for agent
i = 1,2 is ai = (ai 1, ai 2). Thus, an action profile is a= (a11, a12, a21, a22) ∈A= A1×A2 = [0,1]4.
The payoff to agent i = 1,2 is given by the expression

Ui (a,t;r ) =−(1− r )
[
(t1 −ai 1)2 + (t2 −ai 2)2]− r

[
(t1 −a(3−i )1)2 + (t2 −a(3−i )2)2].

As for the information transmission process, each agent i = 1,2 has a set of messages
M = [0,1] available to transmit information about his own type to the other agent. Using the
notation introduced in subsection 2.3, m1 = m21 and m2 = m12 denote, respectively, the mes-
sage received by agent 1 (from agent 2) and the message received by agent 2 (from agent 1).
Also, x1 = x12 and x2 = x21 denote, respectively, the information acquisition strategy for agent
1 (to acquire information from agent 2) and the information acquisition strategy for agent 2 (to
acquire information from agent 1).

In this example, a message strategy for agent i = 1,2, given the information acquisition
strategy x3−i chosen by the other agent, is simply

βi (m3−i |ti ; x3−i ) = (1−x3−i ) f (m3−i )+x3−i 1(m3−i |ti ).

Accordingly, the induced beliefs for agent 3− i (i = 1,2) over agent i ’s type are given by

λ3−i (ti |m3−i ; x3−i ) = (1−x3−i ) f (ti )+x3−i 1(m3−i |ti ).

The action choice of agent i = 1,2, given his own type ti ∈ [0,1] and the message mi ∈ [0,1]

that he receives from agent 3− i , is given by his action strategy αi :

ai = (ai 1, ai 2) =αi (ti ,mi ) = (αi i (ti ),αi (3−i )(mi )).

I proceed by computing the optimal action strategy and the optimal information acquisition
strategy for the agents. For the sake of clarity, I will write down the arguments only for a given
agent, say agent i = 1, but will also derive the analogous implications for agent 2.
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Consider a given information acquisition profile x = (x1, x2) ∈ [0,1]× [0,1] that induces a
belief profile λ = (λ1,λ2). From the expression above for the payoff to agent i = 1 together
with (4) agent 1’s expected payoff in stage 2, given type t1 ∈ [0,1] and message profile m =
(m1,m2) ∈ [0,1]× [0,1], specializes to

V1,2(a1,α2,λ1; t1,m) =
∫ 1

0

[
(1−x1) f (t2)+x11(m1|t2)

]
U1

(
a1,α2(t2,m2), t1, t2;r

)
d t2

=−(1− r )
∫ 1

0

[
(1−x1) f (t2)+x11(m1|t2)

][
(t1 −a11)2 + (t2 −a12)2]d t2

− r
∫ 1

0

[
(1−x1) f (t2)+x11(m1|t2)

][
(t1 −α21(m2))2 + (t2 −α22(t2))2]d t2,

where a1 = (a11, a12) = α1(t1,m1) = (α11(t1),α12(m1)). From the expression above it follows
that a∗

11 = t1 and (using the expression analog to the one above for agent 2) α∗
22(t2) = t2 cor-

respond to the optimal action strategy of the agents. Using this, we can rewrite the expression
above for agent 1’s expected payoff in stage 2, when both agents’s choose their optimal actions
for the aspect of the problem in which they are the experts, as

V1,2(a∗
1 ,α∗

2 ,λ1; t1,m) =− (1− r )
[

(1−x1)
∫ 1

0
(t2 −a∗

12)2 f (t2)d t2 +x1(m1 −a∗
12)2

]
− r (t1 −α∗

21(m2))2.

From the expression above (and from the analog one for agent 2), we obtain that a∗
12 = (1−

x1)µ+ x1m1 and α∗
21(m2) = (1− x2)µ+ x2m2 correspond to the optimal action strategy of the

agents. Using this and doing the algebra, yields

V1,2(a∗
1 ,α∗

2 ,λ1; t1,m) =− (1− r )(1−x1)
[
σ2 +x1(m1 −µ)2]

− r
(
t1 − (1−x2)µ−x2m2

)2.

Now, using (5) together with the expressions obtained above for both agents’ message strate-
gies, the expression for agent 1’s expected payoff in stage 1, when both agents’s choose their
optimal action strategies, specializes to

V1,1(α∗,λ1) =
∫ 1

0

∫ 1

0
f (t1) f (t2)

∫ 1

0

∫ 1

0

[
(1−x2) f (m2)+x21(m2|t1)

]×
× [

(1−x1) f (m1)+x11(m1|t2)
]
V1,2(α∗

1 (t1,m1),α∗
2 ,λ1; t1,m)dm2dm1d t2d t1 − cx1.

By substituting the expression of agent 1’s expected payoff in stage 2, V1,2(α∗
1 (t1,m1),α∗

2 ,λ1; t1,m),
obtained earlier, into the expression above and by doing the algebra, we finally obtain

V1,1(α∗,λ1) =−(1− r )(1−x2
1)σ2 − r (1−x2

2)σ2 − cx1.

Therefore, the optimal information acquisition strategy of agent 1 is given by (i) x∗
1 = 0 ⇔

c ≥ (1− r )σ2, (ii) x∗
1 = 1 ⇔ c ≤ (1− r )σ2, and (iii) x∗

1 ∈ {0,1} ⇔ c = (1− r )σ2, regardless of
the information acquisition strategy chosen by agent 2. Of course, for agent 2 one obtains an
analogous optimal information acquisition strategy.
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I turn now to study efficient information acquisition in this example. Addition of the payoffs
of the two agents, when both of them choose their optimal action strategies, together with the
expressions above for such optimal strategies, gives us the following expression for the welfare
function evaluated in stage 2:

W2(t1, t2,m1,m2;λ1,λ2) = (
t2 −α∗

12(m1)
)2 + (

t1 −α∗
21(m2)

)2

= (
t2 − (1−x1)µ−x1m1

)2 + (
t1 − (1−x2)µ−x2m2

)2.

Using the expression in equation (6), the welfare function evaluated in stage 1 specializes to

W1(x) =
∫ 1

0

∫ 1

0
f (t1) f (t2)

∫ 1

0

∫ 1

0

[
(1−x2) f (m2)+x21(m2|t1)

]×
× [

(1−x1) f (m1)+x11(m1|t2)
]
W2(t1, t2,m1,m2;λ1,λ2)dm2dm1d t2d t2 − c[x1 +x2].

Then, by substituting the expression for the welfare function evaluated in stage 2 obtained ear-
lier into the expression above and by doing the algebra, it can be checked that the expression
for the welfare function evaluated in stage 1 in equation (6) becomes

W1(x) =−2σ2 +x1[x1σ
2 − c]+x2[x2σ

2 − c].

Therefore, the efficient information acquisition profile (x1, x2) must satisfy, for each i = 1,2, (i)
xi = 0 ⇔ c ≥σ2, (ii) xi = 1 ⇔ c ≤σ2, and (iii) xi ∈ {0,1} ⇔ c =σ2.

In this example we observe that the (possible) discrepancy between the efficient and the
equilibrium information acquisition profiles is due to the team concern. This example illus-
trates the main ingredients of the model but it does not allow us to obtain insights for the case
where the agents are indeed connected through a network. In particular, under the requirement
imposed by the IAE notion that agents correctly anticipate the role of information in shaping
their posterior beliefs (and incorporate it in their information acquisition decisions), interesting
strategic interactions over information acquisition decisions arise when more than two agents
are connected through a network. Thus, the fact that the agents acquire information through a
network plays an essential role in this model. The rest of the paper is devoted to that analysis.

3. Efficiency and Equilibrium

This section characterizes both the set of efficient information acquisition profiles and the
set of IAE, and relates the compatibility between them to the network density.

I start by studying the optimal action strategies followed by the agents. For i ,k ∈ N , i 6= k,
let

E[tk |mki ; xi k ] :=
∫ 1

0
λi k (tk |mki ; xi k )tk d tk

and

Var[tk |mki ; xi k ] :=
∫ 1

0
λi k (tk |mki ; xi k )

(
tk −E[tk |mki ; xi k ]

)2d tk
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denote, respectively, the expected value and the variance of type tk for the received message
mki , given the information acquisition parameter xi k . Thus, by applying the belief revision rule
specified in (BU) to agent i , with respect to agent k’s type, one obtains

E[tk |mki ; xi k ] = (1−xi k )µ+xi k mki , (7)

and

Var[tk |mki ; xi k ] = (1−xi k )
[
σ2 +xi k (mki −µ)2]. (8)

Since the expected payoff of each agent in stage 2 is concave with respect to his own action,
agent i ’s optimal action strategy α̂i (·;λi ), λi ∈Q, is given by the first order conditions

α̂i i (ti ) = ti and α̂i k (mki ;λi k ) = E[tk |mki ; xi k ] for each k 6= i , (9)

where xi induces λi . Thus, each agent chooses optimally his expectation of the underlying state
t according to the posteriors that he obtains with the information acquired from his neighbors.

I turn now to characterize the efficient information acquisition profiles.

3.1. Efficient Information Acquisition

Using the payoff specification given by equation (1) and the specification of the welfare
function evaluated in stage 2 in Definition 2, one obtains

W2(t,m;λ) =− ∑
i∈N

∑
k 6=i

(
tk − α̂i k (mki ;λi k )

)2.

Hence, a social planner who faces the problem of maximizing the welfare function evaluated
in stage 2 seeks to keep the action of each agent close to the underlying state and ignores the
team concern of each agent. This is due to the fact that agents are ex-ante identical so that
the influence of each agent’s action on any other agent’s payoff is homogenous across agents.
Therefore, the efficient information acquisition profile is characterized by the condition that
ensures the optimal behavior of each agent with respect to information acquisition in the limit
case where the team concern is absent, i.e., when r = 0, as provided by Proposition 1 below.

Proposition 1. Let g ∈ G and let x be an efficient information acquisition profile. Then, for
each agent i ∈ N and each neighbor k ∈ Ni (g ), either
(i) xi k = 0 if and only if c ≥σ2,
(ii) xi k = 1 if and only if c ≤σ2, or
(iii) xi k ∈ {0,1} if and only if c =σ2.

Consider an efficient information acquisition profile x ∈ X . From the assumed homogeneity
with respect to the variance of the agents’ types, together with the fact that the information
acquisition cost is identical for all agents, it follows that18

x= 0 ⇔ c ≥σ2 (10)
18The notation 0 and 1 denotes, respectively, the vector (0,0, · · · ,0) and the vector (1,1, · · · ,1) in a space of

conformal dimension.
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and

x= 1 ⇔ c ≤σ2. (11)

That is, for c 6= σ2, in an efficient information acquisition profile either all the agents acquire
full information from their neighbors or acquire no information at all.

Proposition 2 in Subsection 3.3 characterizes the best response information acquisition strat-
egy of an agent—as a function of the information acquisition strategies taken by the rest of
agents. It shows that, for a given network g ∈ G , the incentives of each agent i ∈ N to acquire
full information in an IAE from a neighbor k ∈ Ni (g ) increase with the amount of information
that the rest of neighbors of agent k acquire from him. Thus, under the sequential rationality re-
quirement in stage 1 imposed by the IAE concept, positive informational spillovers over actions
induce a certain degree of coordination (in the same direction) over the information acquisition
strategies followed by the agents at equilibrium. Before stating the formal result, I provide an
example in the next subsection, for a network involving three agents, that illustrates the forces
behind that coordination effect.19

3.2. A Three-Agent Example

Consider N = {1,2,3} and the network g = {12,23}. In this example we ask ourselves: why
should, in an IAE, the amount of information that agent 1 acquires from 2 depend on the amount
of information that 3 acquires from 2?

To address this question, it suffices to account for that part of agent 1’s expected payoff
due to the team concern. Using the payoff specification in (1), we see that agent 1 cares about
−‖t− a3‖2. In particular, he wishes that the difference (t2 − a32)2 be minimized, i.e., he cares
about the extent to which agent 3 solves aspect 2 (for which agent 2 is the expert) of his problem.
Notice that agent 1 is risk averse with respect to agent 3’s choice over the second coordinate of
the state of world. From (7), we know that, given a message m23 received from agent 2, agent
3’s optimal action choice over the second aspect of the problem is given by his expectation of
that coordinate according to the induced posteriors λ32 (that he obtains from his information
acquisition decision x32 regarding agent 2). That is,

α̂32(m23;λ32) = E[t2|m23; x32] = (1−x32)µ+x32m23.

First, suppose that agent 3 acquires no information at all from agent 2. Then, for each mes-
sage m23 ∈ [0,1] received by agent 3 from agent 2, agent 1 knows that agent 3 optimally chooses
α̂32(m23;λ32) = µ, so that agent 1 cares about −(t2 −µ)2. Thus, the only source of uncertainty
affecting agent 1 is with respect to t2.

If agent 1 decides to acquire no information at all from agent 2, then at stage 1 he knows
that at stage 2 he would compute −(t2 −µ)2 according to his priors f (t2), obtaining expected
payoff −σ2 in stage 2. Consequently, he knows that at stage 1 he would compute −σ2 again

19I am grateful to Dragan Filipovich for suggesting me to provide an example along these lines.
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according to his priors f (t2). Thus the component of his expected payoff in stage 1 due to
concern −(t2 −a32)2 and to his information acquisition decision amounts to −σ2.

If, on the other hand, agent 1 decides to acquire full information from agent 2, then at stage
1 he knows that at stage 2 he would know the true value of −(t2 −µ)2. However, at stage 1

he does not know the way in which µ relates to t2. In particular, he does not know whether t2

coincides with µ or not, and, consequently, he continues to compute −(t2−µ)2 according to his
priors f (t2). Then, the component of his expected payoff in stage 1 due to concern −(t2 −a32)2

and to his information acquisition decision amounts to −σ2−c. So long as c > 0 agent 1 prefers,
regarding component −(t2 − a32)2 of his payoff (and other things being equal), to acquire no
information from agent 2 when agent 3 acquires no information from agent 2.

Second, suppose that agent 3 acquires full information from agent 2. Then, for a given
message m23 ∈ [0,1] received by agent 3 from agent 2, agent 1 knows that agent 3 optimally
chooses α̂32(m23;λ32) = m23, so that agent 1 cares now about −(t2 −m23)2. So, there are now
two sources of uncertainty affecting agent 1 (over this component of his payoffs), one due to t2,
the other corresponding to m23. Agent 1 can use the information that he acquires from agent 2

to improve his knowledge about the way in which m23 relates to t2. Notice that, even though
agent 1 knows the value of x32, his information about the particular message m23 depends on
the amount of information about t2 that he acquires.

If agent 1 decides to acquire no information at all from agent 2, then at stage 1 he knows
that at stage 2 he would compute −(t2−m23)2 using his priors f (m23). Consequently, he knows
that at stage 1 he would compute −∫ 1

0 (t2 −m23)2 f (m23)dm23 using his priors f (t2). Thus, the
component of his expected payoff in stage 1 due to concern −(t2 −a32)2 and to his information
acquisition decision amounts to −2σ2 in stage 1.

If, on the other hand, agent 1 decides to acquire full information from agent 2, then at stage
1 he knows that at stage 2 he would compute −(t2 −m23)2 knowing exactly the way in which
m23 relates to t2 for agent 2’s message strategy with respect to agent 3. Therefore, agent 1

knows at stage 1 that at stage 2 he would know (i) that m23 coincides with t2 and (ii) the exact
value of m23. Consequently, agent 1 knows that at stage 2 he would compute a zero expected
payoff. Then, at stage 1 he would compute a zero payoff according to his priors f (t2), so that the
component of his expected payoff in stage 1 due to concern −(t2 −a32)2 and to his information
acquisition decision amounts to −c.

We see that agent 1 is more inclined to acquire full information from agent 2 when agent 3

acquires full information from agent 2 than in the case where agent 3 acquires no information
from agent 2.

In this example, agent 3’s information acquisition decisions from agent 2 affect the relation
between agent 1’s information acquisition decisions from agent 2 and his own (anticipated)
posterior perception of the expected value of −(t2 − a32)2. Note that the IAE concept imposes
that the posterior beliefs over t2 of agent 1 and of agent 3 enter agent 1’s expected payoff in
stage 1 in a multiplicative way. This implies that the information a acquisition parameters x12

and x32 enter also agent 1’s expected payoff in stage 1 in a multiplicative way, which leads
to the result that the information acquisition decisions of agents 1 and 3 are interdependent at
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equilibrium when information acquisition is costly.

3.3. Information Acquisition Equilibrium

The next proposition characterizes the best response information acquisition strategies of
the agents.

Proposition 2. Let g ∈G and let (α∗,λ∗,x∗) be an IAE. Then, for each agent i ∈ N and each
neighbor k ∈ Ni (g ), either
(i) x∗

i k = 0 if and only if c ≥σ2
[

(1− r )+2r 1
n−1

∑
j∈Nk (g )\{i }(x∗

j k )2
]
,

(ii) x∗
i k = 1 if and only if c ≤σ2

[
(1− r )+2r 1

n−1

∑
j∈Nk (g )\{i }(x∗

j k )2
]
, or

(iii) x∗
i k ∈ {0,1} if and only if c =σ2

[
(1− r )+2r 1

n−1

∑
j∈Nk (g )\{i }(x∗

j k )2
]
.

Since we are considering an externality, with the form of the team concern, one might expect
that the conditions that characterize the set of equilibria (provided by Proposition 2 above)
do not coincide with those characterizing the set of efficient information acquisition profiles
(provided by Proposition 1). The forces behind this discrepancy for this set-up are, however,
more subtle than those involved in traditional inefficiency results in the presence of externalities.
The fact that the agents’ expected payoffs in stage 1 incorporate their expected payoffs in stage
2 using their own posterior beliefs is crucial to explain the differences between efficient and
equilibrium information acquisition.

In this model, the information that an agent i ∈ N acquires from a neighbor k ∈ Ni (g ) shapes
his own beliefs about the underlying state as well as about the extent to which the optimal action
of any other neighbor of agent k, j ∈ Nk (g ) \ {i } approaches the true state. In other words, by
changing his information acquisition decision, agent i changes the way in which he anticipates
his perception of the extent to which agent j ∈ Nk (g ) \ {i } solves aspect k of his own problem.
This is mathematically expressed by the fact that, under the sequential rationality condition in
stage 1 imposed by the IAE concept, the posterior beliefs of agent i and of agent j about tk

enter agent i ’s expected utility at stage 1 in a multiplicative way. Finally, note that, to obtain the
result stated in Proposition 2, is crucial that (i) information acquisition be costly, that (ii) agent
i cares about agent j ’s action choice over coordinate k of the action space, and that (iii) agent i

be risk averse with respect to the difference tk −a j k .
An obvious consequence of Proposition 2 is that, in equilibrium, it is less likely that a hub

in a network acquires full information from the agents in his periphery than each of the agents
in the periphery acquire full information from that particular hub. Also, the likelihood with
which an agent in the periphery of a hub acquires full information from that hub increases
with the number of agents in the periphery of the hub. To see this, consider the star network
g = {12,13, . . . ,1n}. It follows from Proposition 2 (ii) that there exists an IAE where each agent
in the periphery of agent 1 acquires full information from that hub if 0 ≤ c ≤σ2

[
(1−r )+2r n−2

n−1

]
.

If we consider a large group so that n →∞, then there exists an IAE where each agent in the
periphery of agent 1 acquires full information from that hub if 0 ≤ c ≤ σ2(1+ r ). In contrast,
in equilibrium, agent 1 acquires full information from an agent in the periphery only if 0 ≤ c ≤
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σ2(1− r ).
Another consequence of Proposition 2 is that the incentives of the agents to acquire full in-

formation from their neighbors in a network increase with the minimum and maximum degrees
of that network. To see this, consider the complete circle network g = {12,23, . . . , (n −1)n} so
that δ(g ) = ρ(g ) = 2. From Proposition 2 (ii), it follows that there is an IAE where each agent
acquires full information from his neighbors if and only if 0 ≤ c ≤ σ2

[
(1− r )+2r 1

n−1

]
. If we

consider a large group so that n →∞, that condition becomes 0 ≤ c ≤ σ2(1− r ). This gives us
an upper bound on the cost lower than that ensuring that each agent in the periphery of the hub
acquires full information from that hub in a star network, as shown above.

3.4. Equilibrium, Efficiency, and the Network Density

Despite the linearity assumptions used in this paper, the best response information acquisi-
tion strategies characterized by Proposition 2 still allow for the existence of multiple IAE for
a broad class of networks. To compare efficient and equilibrium information acquisition pro-
files, it is useful to use Proposition 2 to characterize IAE where either all the agents acquire full
information from their neighbors or acquire no information at all.

Let us define κ(a(g ),n) := max
{
2[a(g )−1]/(n −1),0

}
where a(g ) ∈ {

δ(g ),ρ(g )
}
. That is,

κ(a(g ),n) is a function strictly increasing with a(g ), a(g ) ∈ {
δ(g ),ρ(g )

}
, i.e., with the minimum

and the maximum degrees of network g , and strictly decreasing with the number of agents in
N . Thus, κ(a(g ),n), a(g ) ∈ {

δ(g ),ρ(g )
}
, can be understood as measures of the degree of density

of network g relative to the size of the organization/group.
Consider an information acquisition profile x∗ ∈X corresponding to an IAE. It follows

from Proposition 2 (i) that

x∗ = 0 ⇔ c ≥σ2(1− r ). (12)

On the other hand, Proposition 2 (ii) implies that

x∗ = 1 ⇔ c ≤σ2[(1− r )+ rκ(δ(g ),n)]. (13)

Notice that an IAE equilibrium for each of the regions of the information acquisition cost de-
limited by equations (12) and (13) above is not necessarily unique. It needs not be so even when
one restricts attention to IAE where either each agent acquires full information or each agent
acquires no information at all. To see this, notice that σ2(1− r ) ≤ σ2[(1− r )+ rκ(δ(g ),n)] for
each g ∈ G and each n ≥ 3 since κ(δ(g ),n) ≥ 0 for each g ∈ G and each n ≥ 3. Therefore, for
σ2(1− r ) ≤ c ≤ σ2[(1− r )+ rκ(δ(g ),n)], both x∗ = 0 and x∗∗ = 1 correspond to IAE. It can be
easily checked that this is the only case where multiplicity of equilibria arises when one re-
stricts attention to IAE where either all the agents acquire full information from their neighbors
or acquire no information at all.

Corollary 1. Let g ∈ G be a network such that δ(g ) ≥ n+1
2 . Then, for each r ∈ [0,1] and each

c ∈ R+, for each efficient information acquisition profile x ∈ X there exists a belief profile
λ ∈Qn induced by x such that (α,λ,x) is an IAE.
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Proof. First, suppose that 0 ≤ c ≤ σ2. Then, using (11), we know that x = 1 is the efficient
information acquisition profile. Since δ(g ) ≥ n+1

2 ⇔ κ(δ(g ),n) ≥ 1 for each n ≥ 3 and each
r ∈ [0,1], we know that 0 ≤ c ≤σ2 implies necessarily 0 ≤ c ≤σ2[(1− r )+ rκ(δ(g ),n)] for each
n ≥ 3. But then, using (13), one obtains that x= 1 corresponds to an IAE.

Second, suppose that c ≥σ2. Then, using (10), we know that x= 0 is the efficient informa-
tion acquisition profile. But then c ≥ σ2(1− r ) for each r ∈ [0,1] so that, using (12), we obtain
that x= 0 corresponds to an IAE. 2

The result in Corollary 1 allows us to relate the network density to the compatibility be-
tween equilibrium and efficient information acquisition. In particular, if the minimum degree
of the network is high enough relative to the size of the organization/group, then each efficient
information acquisition profile can be reached in an IAE.

However, one must consider the comparison between equilibrium and efficient information
acquisition obtained from Corollary 1 with due care since, as mentioned earlier, there are mul-
tiple IAE for some regions of the cost. In particular, for r ∈ (0,1], using (12), one obtains that,
regardless of the network architecture, if σ2(1− r ) < c <σ2, then there exists an IAE where all
the agents acquire no information at all from his neighbors. However, it follows from (11) that
the efficient information profile for cost in that interval requires that all the agents acquire full
information, regardless of the network architecture.

Corollary 2. Let g ∈ G be a network such that δ(g ) < n+1
2 . Then, for each r ∈ (0,1] and each

σ2[(1− r )+ rκ(δ(g ),n)] < c <σ2, each agent acquires full information from each of his neigh-
bors in the efficient information acquisition profile whereas at least some agent acquires no
information at all in the information acquisition profile corresponding to each IAE.

Proof. Since δ(g ) < n+1
2 ⇔ κ(δ(g ),n) < 1 for each n ≥ 3 and each r ∈ (0,1], we know that

σ2[(1− r )+ rκ(δ(g ),n)] < σ2. So, suppose that σ2[(1− r )+ rκ(δ(g ),n)] < c < σ2. Then, from
(11), we know that x = 1 is the efficient information acquisition profile. However, since c >
σ2[(1− r )+ rκ(δ(g ),n)], the result in Proposition (i) implies that at least some agent acquires
no information at all in each IAE. 2

Obviously, the existence of multiple IAE does not impose any qualification to the message
conveyed by Corollary 2 since it identifies a region of the information acquisition cost where
all IAE are inefficient.

The intuition behind the results in Corollary 1 and Corollary 2 is as follows. By comparing
the result in Proposition 1 with that in Proposition 2, we observe that the (possible) discrepancy
between efficient and equilibrium information acquisition is driven by the coordination effect
(in the same direction) identified in Proposition 2. For information acquisition cost relatively
high, c > σ2, this coordination effect has no influence on the agents’ decisions for one of the
possible equilibria (the one with no information acquisition). So, one obtains that an equilib-
rium information acquisition profile coincides with the efficient one. However, for lower values
of the information acquisition cost, c <σ2, such a coordination effect does influence the agents’
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decisions at each equilibrium. If c <σ2, full information acquisition of each agent from each of
his neighbors corresponds to the efficient profile. Then, given the coordination effect, an agent
i ∈ N will choose, at equilibrium, to acquire full information from a neighbor k ∈ Ni (g ) if the
number of other neighbors of agent k that acquire full information from him is relatively high.
For this to happen, agent k needs to be “minimally connected” in network g . Since we are look-
ing at equilibria where all the agents either acquire full information or acquire no information
at all, the fact that each agent k ∈ N be minimally connected is a sufficient condition to guar-
antee efficiency of the equilibrium profile. The minimal connectivity condition that we obtain,
δ(g ) ≥ n+1

2 , requires that the minimum degree of network g be larger than half of the size of the
group.

Corollary 3. Consider a network g ∈G and suppose that r ∈ [0,1]. Then:
(i) For each 0 < c <σ2(1−r ), the efficient information acquisition profile coincides with the in-
formation acquisition profile corresponding to the unique IAE. In this IAE, each agent acquires
full information from each of his neighbors.
(ii) If ρ(g ) ≥ n+1

2 , then, for each c >σ2[(1− r )+ rκ(ρ(g ),n)] the efficient information acquisi-
tion profile coincides with the information acquisition profile corresponding to the unique IAE.
In this IAE, each agent acquires no information at all from each of his neighbors. Moreover, if
ρ(g ) < n+1

2 , then the same conclusion holds for each c >σ2.

Proof. (i) Clearly, 0 < c < σ2(1− r ) implies 0 < c < σ2 for each r ∈ [0,1]. So, using (11), we
know that, for each 0 < c <σ2(1−r ), the efficient information acquisition profile is x= 1. Also,
since, for each r ∈ [0,1] and each i ∈ N ,

σ2(1− r ) ≤

≤ inf

{
σ2

[
(1− r )+ 2r

n −1

∑
j∈Nk (g )\{i }

(x∗
j k )2

]
: x∗

j k ∈ [0,1] , j ∈ Nk (g ) \ {i } , k ∈ Ni (g )

}
,

Proposition 2 (ii) implies that x∗ = 1 is the information acquisition profile corresponding to the
unique IAE when c <σ2(1− r ).

(ii) First suppose that ρ(g ) ≥ n+1
2 . Then, κ(ρ(g ),n) ≥ 1 and, therefore,σ2[(1−r )+rκ(ρ(g ),n)] ≥

σ2 for each r ∈ [0,1]. So, using (10), we know that, for each c > σ2[(1− r )+ rκ(ρ(g ),n)], the
efficient information acquisition profile is x= 0. Also, since for each r ∈ [0,1] and each i ∈ N ,

σ2[(1− r )+ rκ(ρ(g ),n)] ≥

≥ sup

{
σ2

[
(1− r )+ 2r

n −1

∑
j∈Nk (g )\{i }

(x∗
j k )2

]
: x∗

j k ∈ [0,1] , j ∈ Nk (g ) \ {i } , k ∈ Ni (g )

}
,

Proposition 2 (i) implies that x∗ = 0 is the information acquisition profile corresponding to the
unique IAE when c >σ2[(1− r )+ rκ(ρ(g ),n)].

Finally, suppose that ρ(g ) < n+1
2 . Then, κ(ρ(g ),n) < 1 and, therefore,σ2[(1−r )+rκ(ρ(g ),n)] <

σ2 for each r ∈ [0,1]. So, since c >σ2 implies c >σ2[(1−r )+rκ(ρ(g ),n)], we can use again the
arguments above to obtain that, for c >σ2, the efficient information acquisition profile is x= 0

and x∗ = 0 is the information acquisition profile corresponding to the unique IAE. 2
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Corollary 3 gives us sufficient conditions for each efficient information acquisition profile
to coincide with that at the unique equilibrium. In particular, the sufficient condition provided
by Corollary 3 (ii) depends on whether the maximum degree of the network exceeds n+1

2 or
not. It can be easily checked that the lower bound identified in Corollary 3 (ii) increases with
the maximum degree of the network on the interval [σ2,σ2(1+ r )]. Thus, Corollary 3 (ii) may
seem to convey the message that, for values of the information acquisition cost high enough,
c ∈ [σ2,σ2(1+ r )], the compatibility between efficient and equilibrium information acquisition
is favored when the maximum degree of the network is relatively low. However, Corollary 3 (ii)
gives us just a sufficient condition on the existence of a unique efficient IAE profile. As shown
by Corollary 2, even for cost in the interval [σ2,σ2(1+ r )], there exists an efficient IAE profile
when the minimum degree of the network is relatively high (δ(g ) ≥ n+1

2 ).
The intuition behind the result in Corollary 3 (ii) is as follows. If c ∈ [σ2,σ2(1+ r )], agents

acquire no information at all in the efficient information acquisition profile. Then, given the
coordination effect identified in Proposition 2, an agent i ∈ N will choose, at equilibrium, to
acquire no information from a neighbor k ∈ Ni (g ) if the number of other neighbors of agent k

that acquire no information from him is relatively high. A sufficient condition for this to happen
is, clearly, that the number of neighbors of agent k be relatively low.

Furthermore, Corollary 3 implies that, for either sufficiently low or sufficiently high values
of the information acquisition cost, the efficient information acquisition behavior coincides with
that at equilibrium, regardless of the network architecture. This result is provided formally by
Corollary 4 below.

Corollary 4. Consider a network g ∈G and suppose that r ∈ [0,1]. If either 0 ≤ c ≤σ2(1−r ) or
c ≥σ2(1+ r ), then each efficient information acquisition profile coincides with the information
acquisition profile corresponding to the unique IAE.

The result in Corollary 4 is a straightforward consequence of Corollary 3 combined with the
fact that, from the definition of κ(a(g ),n), a(g ) ∈ {

δ(g ),ρ(g )
}
, we have

0 ≤ κ(δ(g ),n) ≤ κ(ρ(g ),n) ≤ 2 · n −2

n −1
< 2 for each g ∈G and each n ≥ 3.

Therefore,

σ2(1− r ) ≤σ2[(1− r )+ rκ(δ(g ),n)] ≤σ2[(1− r )+ rκ(ρ(g ),n)] <σ2(1+ r )

is satisfied for each g ∈G and each n ≥ 3.
The intuition behind the result in Corollary 4 is simply that, for either very low or very high

values of the cost, the coordination effect identified in Proposition 2 becomes of no importance
for the agents’ incentives to acquire information. This leads to the result that the IAE profile
coincides with the efficient one.

4. Robustness and Justifications of the Model

This paper has studied both equilibrium and efficiency properties of the information acqui-
sition phenomenon through networks by using a specific description of the information trans-
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mission process and by making specific assumptions on payoffs. In this section, I discuss the
robustness of the model by analyzing the implications of changing some of the assumptions.

The first subsection below discusses the implications of assuming an alternative information
transmission process where the agents receive a Normal signal consisting of the true type plus
some noise. The second subsection studies whether the main implications of the model continue
to hold under a payoff perturbation that introduces a convex cost function.

4.1. Normal Signals

Following the approach pursued by recent works on the social value of information and
on communication networks,20 let us consider an alternative description of the information
transmission process. Assume that each type ti is drawn according to a Normal distribution
with mean µ and variance σ2. As a consequence of his information acquisition decisions, each
agent i ∈ N receives from each of his neighbors k ∈ Ni (g ) a private signal yki := tk +εki where
εki is an idiosyncratic noise normaly distributed with mean zero and variance ς2

ki . Furthermore,
for each i ∈ N , assume that: (i) tk and εki are independent for each k 6= i , and (ii) εki and ε j i are
independent for each k, j ∈ N such that k 6= i , j 6= i , and k 6= j . The rest of the game is identical
to the one described in Section 2.

Then, it can be checked that agent i ’s posterior beliefs about type tk , k 6= i , conditional on
receiving signal yki , are given by a Normal distribution with mean E[tk |yki ] = γyki + (1−γ)µ

and variance Var[tk |yki ] satisfying γ= Var[tk |yki ]/(σ2 +ς2
ki ), where γ ∈ [0,1].

Therefore, since an agent’s expected payoffs are concave with respect to his own action, his
optimal action strategy for a given coordinate k 6= i consists of a linear combination between
the mean of type tk (using prior beliefs) and the signal yki that he receives from agent k. The
class of message strategies chosen in this paper leads to the same conclusion, as implied by
equation (7).

Furthermore, Var[tk |yki ]/(σ2 +ς2
ki ) increases with γ, and one obtains the limit cases: (a) if

γ→ 1, then Var[tk |yki ] ≈σ2+ς2
ki whereas (b) if γ→ 0, then ς2

ki →∞ for a bounded Var[tk |yki ].
This implication that the variance of the type (conditioned on the signal) increases with γ ∈ [0,1]

is anologous to the one obtained in this paper, as derived from equation (8). The correspond-
ing implication obtained in this paper is that the variance of an unknown agent’s type, from
the perspective of the agent that acquires information from him, decreases with the amount of
information that he acquires.

Thus, given the assumed payoffs, this alternative benchmark for information transmission
with normal signals permits us to obtain implications qualitatively similar to those derived from
the message strategies considered in this paper. In particular, in both benchmarks, one obtains
that each agent’s optimal action strategy (for a given dimension of the action space) is linear
with respect to the received signal, according to a certain weight parameter. In addition, the
variance of an unknown agent’s type, conditional upon the received signal, decreases with such
a weight parameter. This paper has analyzed information acquisition by allowing the agents to

20See, e.g., Angeletos and Pavan [3], and Calvó-Armengol and de Martí [8].
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choose endogenously the value of that weight parameter.

4.2. Non-linear Information Acquisition Cost

This paper has concentrated on the analysis of both efficient and equilibrium information
acquisition strategies where agents either acquire full information or acquire no information at
all. The result that the planner and the agents make corner choices in their respective decision
problems (i.e., xi k ∈ {0,1} for each k ∈ Ni (g ) and each i ∈ N ) is driven by the assumed message
strategies and by the assumption of linear information acquisition cost. This has made tractable
the problem of comparing efficient and equilibrium information acquisition profiles.

One may wonder, however, whether the results obtained here would change under a slightly
modified class of preferences that allows for the study of choices about information acquisition
given by interior solutions (i.e., xi k ∈ (0,1) for each k ∈ Ni (g ) and each i ∈ N ).

To answer this, I consider a payoff perturbation by assuming that each agent i ∈ N incurs
a cost of information acquisition with respect to each neighbor k ∈ Ni (g ) given by a (twice
differentiable) cost function c : [0,1] →R+ satisfying: (i) c ′(x) > 0 for each x ∈ (0,1], (ii) c ′(0) = 0

and c ′(1) > 2σ2(1+r ), and (iii) c ′′(x) > 2σ2(1+r ) for each x ∈ [0,1]. Condition (ii) above ensures
that the planner and the agents make interior choices in their respective decision problems with
respect to information acquisition. Condition (iii) guarantees that the respective information
acquisition decision problems for the planner and the agents are concave. The rest of the game
is identical to the one presented in Section 2.

Under the alternative assumption introduced above, one obtains the following results re-
garding efficient and equilibrium information acquisition behavior. They are analogs to those
provided by Proposition 1 and Proposition 2.

Proposition 3. Let g ∈G and letx be an efficient information acquisition profile. Then, for each
agent i ∈ N and each neighbor k ∈ Ni (g ), the information adquisition parameter xi k satisfies
xi k ∈ (0,1) and

c ′(xi k )

xi k
= 2σ2. (14)

Proposition 4. Let g ∈ G and let (α∗,λ∗,x∗) be an IAE. Then, for each agent i ∈ N and
each neighbor k ∈ Ni (g ), for each given x∗

−i ∈ X−i , the information acquisition parameter x∗
i k

satisfies x∗
i k ∈ (0,1) and

c ′(x∗
i k )

x∗
i k

= 2σ2
[

(1− r )+ 2r

n −1

∑
j∈Nk (g )\{i }

(x∗
j k )2

]
. (15)

Let us see briefly whether the earlier result (obtained in Proposition 2) stating that the in-
centives of an agent to acquire information from a given neighbor increase with the amount
of information that the rest of neighbors of that neighbor acquire from him continues to apply.
Consider a network g ∈G . For a given agent i ∈ N and a given neighbor k ∈ Ni (g ), let us define
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the function

H(xi k ; y) :=
[

(1− r )+ 2r

n −1
y
]
σ2x2

i k − c(xi k )−
[

(1− r )+ r

n −1
y
]
σ2,

where y =∑
j∈Nk (g )\{i } x2

j k . The proof of Proposition 4 shows that agent i chooses optimally the
amount of information that he acquires from his neighbor k if and only if he chooses x∗

i k ∈ [0,1]

so as to maximize H(xi k ; y). Therefore, the first order condition ∂H(x∗
i k ; y)/∂xi k = 0 gives us

equation (15) above. Furthermore, it can be checked that ∂2H(xi k ; y)/∂xi k∂y ≥ 0 for each xi k ∈
[0,1] and each y ≥ 0. Then, using Topkis’ Monotonicity Theorem,21 one obtains that x∗

i k is an
increasing function with respect to y .

Hence, under this alternative cost specification, the result that the agents wish to coordinate
their information acquisition decisions in the same direction continues to apply. This is impor-
tant since the results of this paper relating the network density to the compatibility between
efficient and equilibrium information acquisition rely strongly on that coordination effect.

It would be interesting to analyze the compatibility between efficient and equilibrium in-
formation acquisition profiles under this alternative cost specification. However, we observe
that equation (15) characterizes a multiplicity of IAE where the agents make interior choices.
Consequently, some selection criterion would be necessary in order to carry out that welfare
analysis.

5. Concluding Comments

This paper considered a multi-agent information transmission model, in terms of Bayesian
belief revision processes, to analyze information acquisition decisions by agents involved in
a network. The environment investigated here is one with no conflict of interests over actions
and with positive informational spillovers. The IAE concept, that incorporates the role of the
newly acquired information in shaping own (anticipated) perception of future expected payoffs
into the agent’s sequential rationality requirements, has been proposed to analyze information
acquisition decisions. The main contributions of this paper were (i) to propose an appealing
game theoretical solution concept, IAN, to study information acquisition decisions within net-
worked groups, (ii) to characterize both the efficient and the equilibrium behavior with respect
to information acquisition, and (iii) to relate the compatibility between efficient and equilibrium
information acquisition to the network density.

One may expect that the results of this paper hold in a wide class of environments where the
information structure features complementarities, where there are no strategic interactions over
actions, and where each agent cares about his own action and wishes the others to align theirs
with the true state. Although the assumptions of the model are specific, they do not appear to be
essential for its main results to follow. In this respect, quadratic payoffs can be considered as a
second-order approximation of a more general class of convex preferences. The chosen payoffs
over actions, together with the chosen message strategies and the linearity assumption on the
cost function, are crucial to obtain that, in equilibrium, an agent acquires either full information

21See, e.g., Topkis [22].
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or no information at all from a given neighbor. This alleviates the problem of multiplicity of
equilibria, making tractable the welfare exercise of comparing efficient and equilibrium infor-
mation acquisition profiles.

However, the results obtained here need not extend to environments with strategic comple-
mentarities over actions and/or a second-guessing coordination motive in payoffs, as it is the
case under the class of preferences proposed, for example, by Morris and Shin [18], Angele-
tos and Pavan [3], Calvó-Armengol and de Martí [8], and Hagenbach and Koessler [13]. For
these models, strategic interactions over actions are rich and constitute an important part of
their analyses. In contrast, this work has concentrated only on the study of strategic interactions
over information acquisition decisions.

Finally, this paper assumed that information cannot be transmitted through agents indirectly
linked in a network. It would be interesting to investigate the information acquisition problem
when such a network effect is allowed for.

Appendix

This appendix is devoted to the proofs of the various propositions.
A bit of notation will be useful. For i ,k ∈ N , i 6= k, let θ(tk |mki ; xi k ) := (

tk −E[tk |mki ; xi k ]
)2

denote agent i ’s square forecast error about tk , conditioned on receiving message mki , given
the piece of information xi k that he acquires from agent k. Using equation (7), one then easily
obtains

θ(tk |mki ; xi k ) = (tk −µ)2 +x2
i k (mki −µ)2 −2xi k (tk −µ)(mki −µ). (16)

With this in hand, let us proceed to the proofs of the propositions.

Proof of Proposition 1. Consider a network g ∈G . The optimal action strategy in equation (9),
together with the expression for the square forecast error in equation (16), allows us to write the
welfare function evaluated in stage 2 as

W2(t,m;λ) =− ∑
i∈N

∑
k 6=i

θ(tk |mki ; xi k )

=−(n −1)
∑

i∈N
(ti −µ)2 − ∑

i∈N

∑
k∈Ni (g )

x2
i k (mki −µ)2

+2
∑

i∈N

∑
k∈Ni (g )

xi k (tk −µ)(mki −µ).

By combining the expression above with equation (6), we can write the welfare function evalu-
ated in stage 1 as

W1(x) =− (n −1)nσ2 − c
∑

i∈N

∑
k∈Ni (g )

xi k

− ∑
i∈N

∑
k∈Ni (g )

x2
i k

∫ 1

0
f (tk )

∫ 1

0
βki (mki |tk ; xi k )(mki −µ)2dmki d tk

+2
∑

i∈N

∑
k∈Ni (g )

xi k

∫ 1

0
f (tk )

∫ 1

0
βki (mki |tk ; xi k )(tk −µ)(mki −µ)dmki d tk .

(17)
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I proceed by expressing each of the terms in equation (17) as a function of the information
acquired by the agents. Consider an agent i ∈ N and an agent k ∈ Ni (g ). Applying the parame-
terization of message strategies in (2) to agent k with respect to agent i , we obtain∫ 1

0
f (tk )

∫ 1

0
βki (mki |tk ; xi k )(mki −µ)2dmki d tk

=
∫ 1

0
f (tk )

∫ 1

0
[(1−xi k ) f (mki )+xi k1(mki |tk )](mki −µ)2dmki d tk

=
∫ 1

0
f (tk )[(1−xi k )σ2 +xi k (tk −µ)2]d tk =σ2.

(18)

Similarly, we can compute∫ 1

0
f (tk )

∫ 1

0
βki (mki |tk ; xi k )(tk −µ)(mki −µ)dmki d tk

=
∫ 1

0
f (tk )

∫ 1

0
[(1−xi k ) f (mki )+xi k1(mki |tk )](tk −µ)(mki −µ)dmki d tk

= xi k

∫ 1

0
f (tk )(tk −µ)2d tk = xi kσ

2.

(19)

So, by substituting equations (18) and (19) into equation (17), we can express the welfare func-
tion evaluated in stage 1 as

W1(x) =−(n −1)nσ2 + ∑
i∈N

∑
k∈Ni (g )

xi k [xi kσ
2 − c]. (20)

Let ψ(xi k ) := xi k [xi kσ
2−c]. Given the parabolic shape of function ψ, we obtain that the welfare

function evaluated in stage 1 is maximized according to: for each i ∈ N and each k ∈ Ni (g ), (i)
xi k = 1 if and only if c ≤σ2, (ii) xi k = 0 if and only if c ≥σ2, and (iii) xi k ∈ {0,1} if and only if
c =σ2, as stated. 2

Proof of Proposition 2. Consider a network g ∈ G . Consider an agent i ∈ N , a type ti ∈ Ti , a
message profile m = (mi ,m−i ) ∈ M n(n−1), and an information acquisition profile x ∈X that
induces a belief profile λ ∈ Qn . Substitution of equation (1) into equation (4), gives us the
following expression for the expected payoff of agent i in stage 2:

Vi ,2(αi (ti ,mi ),α−i ,λi ; ti ,m) =−(1− r )
(
ti −αi i (ti )

)2

− (1− r )
∑
k 6=i

∫ 1

0
λi k (tk |mki ; xi k )

(
tk −αi k (mki )

)2d tk

− r

n −1

∑
j 6=i

(
ti −α j i (mi j )

)2

− r

n −1

∑
k 6=i

∑
j 6=i ,k

∫ 1

0
λi k (tk |mki ; xi k )

(
tk −α j k (mk j )

)2d tk

− r

n −1

∑
k 6=i

∫ 1

0
λi k (tk |mki ; xi k )

(
tk −αkk (tk )

)2d tk .

(21)
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By substituting the optimal action strategies in equation (9) into equation (21) above, we can
write the expected payoff of agent i ∈ N for (ti ,m) ∈ Ti ×M n(n−1), when all the agents choose
their optimal action strategies, as

Vi ,2(α̂i (ti ,mi ;λi ), α̂−i ,λi ; ti ,m) =−(1− r )
∑
k 6=i

Var[tk |mki ; xi k ]

− r

n −1

∑
j 6=i

θ(ti |mi j ; x j i )− r

n −1

∑
k 6=i

∑
j 6=i ,k

∫ 1

0
λi k (tk |mki ; xi k )θ(tk |mk j ; x j k )d tk .

(22)

Now, using equations (5) and (22), we can write agent i ’s expected payoff in stage 1, when all
the agents choose their optimal action strategies, as

Vi ,1(α̂,λi ) =− (1− r )
∑
k 6=i

∫ 1

0
f (τ)

∫ 1

0
βki (mki |τ; xi k )Var[tk |mki ; xi k ]dmki dτ

− r

n −1

∑
j 6=i

∫ 1

0
f (τ)

∫ 1

0
βi j (mi j |τ; x j i )θ(τ|mi j ; x j i )dmi j dτ

− r

n −1

∑
k 6=i

∑
j 6=i ,k

∫ 1

0
f (τ)

∫ 1

0
βki (mki |τ; xi k )

∫ 1

0
βk j (mk j |τ; x j k )×

×
∫ 1

0
λi k (tk |mki ; xi k )θ(tk |mk j ; x j k )d tk dmk j dmki dτ

− ∑
k∈Ni (g )

cxi k .

(23)

I proceed by expressing each of the first three terms that appear in expression (23) above as a
function of the agents’ information acquisition parameters.

As regards the first term, consider an agent k 6= i . Then, applying the parameterization of
message strategies in (2) to agent k and the expression for the variance of tk for the information
acquisition parameter xi k in (8), we obtain∫ 1

0
f (τ)

∫ 1

0
βki (mki |τ; xi k )Var[tk |mki ; xi k ]dmki dτ

=
∫ 1

0
f (τ)

∫ 1

0

[
(1−xi k ) f (mki )+xi k1(mki |tk )

]
(1−xi k )×

× [
σ2 +xi k (mki −µ)2]dmki dτ

=
∫ 1

0
f (τ)

[
(1−xi k )(1+xi k −x2

i k )σ2 +x2
i k (1−xi k )(τ−µ)2]dτ

= [1−x2
i k ]σ2.

(24)

As for the second term in expression (23), consider an agent j 6= i . Applying the parame-
terization of message strategies in (2) and the expression of the square forecast error in (16) to
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agent j , we have∫ 1

0
f (τ)

∫ 1

0
βi j (mi j |τ; x j i )θ(τ|mi j ; x j i )dmi j dτ

=
∫ 1

0
f (τ)

∫ 1

0

[
(1−x j i ) f (mi j )+x j i 1(mi j |ti )

]×
× [

(τ−µ)2 +x2
j i (mi j −µ)2 −2x j i (τ−µ)(mi j −µ)

]
dmi j dτ

=
∫ 1

0
f (τ)

[
(1−x j i )x2

j iσ
2 + [(1−x j i )+x j i +x3

j i −2x2
j i ](τ−µ)2]dτ

= [
x2

j i −x3
j i +1−x j i +x j i +x3

j i −2x2
j i

]
σ2 = [

1−x2
j i

]
σ2.

(25)

As for the third term in expression (23), consider two agents, j 6= i and k 6= i , such that
j 6= k. Application of the belief Bayesian updating rule specified in (BU) to agent i with respect
to agent k’s type, together with the expression of the square forecast error in (16), gives us∫ 1

0
λi k (tk |mki ; xi k )θ(tk |mk j ; x j k )d tk

=
∫ 1

0

[
(1−xi k ) f (tk )+xi k1(mki |tk )

][
(tk −µ)2 +x2

j k (mk j −µ)2 −2x j k (tk −µ)(mk j −µ)
]
d tk

= (1−xi k )σ2 +x2
j k (mk j −µ)2 +xi k (mki −µ)2 −2xi k x j k (mki −µ)(mk j −µ).

Next, application of the message strategy specified in (2) to agent k with respect to the message
that he sends to agent j gives us∫ 1

0
βk j (mk j |τ; x j k )

∫ 1

0
λi k (tk |mki ; xi k )θ(tk |mk j ; x j k )d tk dmk j

=
∫ 1

0

[
(1−x j k ) f (mk j )+x j k1(mk j |τ)

]×
× [

(1−xi k )σ2 +x2
j k (mk j −µ)2 +xi k (mki −µ)2 −2xi k x j k (mki −µ)(mk j −µ)

]
dmk j

= [
(1−xi k )+ (1−x j k )x2

j k

]
σ2 +xi k (mki −µ)2 +x3

j k (τ−µ)2 −2xi k x2
j k (mki −µ)(τ−µ).

Furthermore, application of the message strategy specified in (2) to agent k with respect to the
message that he sends to agent i yields∫ 1

0
βki (mki |τ; xi k )

∫ 1

0
βk j (mk j |τ; x j k )

∫ 1

0
λi k (tk |mki ; xi k )θ(tk |mk j ; x j k )d tk dmk j dmki

=
∫ 1

0

[
(1−xi k ) f (mki )+xi k1(mki |τ)

]×
× [

(1−xi k )+ (1−x j k )x2
j k

]
σ2 +xi k (mki −µ)2 +x3

j k (τ−µ)2 −2xi k x2
j k (mki −µ)(τ−µ)

]
dmki

= [
(1−xi k )+ (1−x j k )x2

j k + (1−xi k )xi k
]
σ2 + [

x3
j k +x2

i k −2x2
i k x2

j k

]
(τ−µ)2.

Thus, one finally obtains∫ 1

0
f (τ)

∫ 1

0
βki (mki |τ; xi k )

∫ 1

0
βk j (mk j |τ; x j k )

∫ 1

0
λi k (tk |mki ; xi k )×

×θ(tk |mk j , x j k )d tk dmk j dmki dτ= [
1+x2

j k −2x2
j k x2

i k

]
σ2.

(26)
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Then, by substituting equations (24)-(26) into equation (23), we can rewrite agent i ’s ex-
pected payoff in stage 1 as

Vi ,1(α̂,λi ) =− (1− r )
∑
k 6=i

[
1−x2

i k

]
σ2 − r

n −1

∑
j 6=i

[
1−x2

j i

]
σ2

− r

n −1

∑
k 6=i

∑
j 6=i ,k

[
1+x2

j k −2x2
j k x2

i k

]
σ2 − ∑

k∈Ni (g )
cxi k .

For k ∈ Ni (g ), let φi k : [0,1] →R be the function defined as

φi k (xi k ) :=
[

(1− r )+ 2r

n −1

∑
j∈Nk (g )\{i }

x2
j k

]
σ2x2

i k − cxi k

−
[

(1− r )+ r

n −1

∑
j∈Nk (g )\{i }

x2
j k

]
σ2.

(27)

Using this, taking into account the fact that, for each i ∈ N , xi k = 0 for k ∉ Ni (g )∪ {i }, and by
rearranging terms, we can express agent i ’s expected payoff in stage 1 as

Vi ,1(α̂,λi ) =− (1− r )(n −ni (g )−1)σ2 − r (n −2)ni (g )

n −1
σ2 − r

n −1

∑
j 6=i

[1−x2
j i ]σ2

− r

n −1

∑
k∉Ni (g )∪{i }

∑
j 6=i ,k

[1+x2
j k ]σ2 + ∑

k∈Ni (g )
φi k (xi k ).

It follows that the information acquisition strategy x∗
i and the corresponding induced beliefs µ∗

i

satisfy conditions (SR2) and (SR1) in the definition of IAE, Definition 1, if and only if, for each
k ∈ Ni (g ), x∗

i k solves the problem:

max
xi k∈[0,1]

φi k (xi k ).

Given the parabolic shape of the function φi k , we obtain that either (i) x∗
i k = 0 ⇔ φi k (0) ≥

φi k (1) ⇔ c ≥σ2
[

(1−r )+2r 1
n−1

∑
j∈Nk (g )\{i }(x∗

j k )2
]
, (ii) x∗

i k = 1 ⇔φi k (1) ≥φi k (0) ⇔ c ≤σ2
[

(1−
r )+2r 1

n−1

∑
j∈Nk (g )\{i }(x∗

j k )2
]
, or (iii) x∗

i k ∈ {0,1} ⇔φi k (1) =φi k (0)

⇔ c =σ2
[

(1− r )+2r 1
n−1

∑
j∈Nk (g )\{i }(x∗

j k )2
]
.

The result follows since we considered a generic agent i ∈ N . 2

Proof of Proposition 3. Consider a network g ∈ G . Since the cost of information acquisition
is given by function c : [0,1] → R+, we can rewrite equation (20), which gives us the welfare
function evaluated in stage 1, as

W1(x) =−(n −1)nσ2 + ∑
i∈N

∑
k∈Ni (g )

[x2
i kσ

2 − c(xi k )].

Therefore, as shown in the proof of Proposition 1, for each agent i ∈ N and each k ∈ Ni (g ), the
problem that the planner faces is:

max
xi k∈[0,1]

σ2x2
i k − c(xi k ).
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Corner solutions for this problem are ruled out by the assumptions c ′(0) = 0 and c ′(1) > 2σ2(1+
r ) on the shape of the cost function. It follows that xi k ∈ (0,1), for each agent i ∈ N and each
neighbor k ∈ Ni (g ), must hold in each efficient information acquisition profile. Furthermore,
it follows from the assumption c ′′(x) > 2σ2(1+ r ), for each x ∈ [0,1], that the set of first order
conditions

c ′(xi k )

xi k
=σ2 for each i ∈ N and each k ∈ Ni (g )

characterizes the solution of the planner’s problem for each agent i ∈ N and each neighbor
k ∈ Ni (g ), as stated. 2

Proof of Proposition 4. Consider a network g ∈G and an agent i ∈ N . Let x∗
i and µ∗

i be, respec-
tively, an information acquisition strategy and the corresponding induced beliefs that satisfy
conditions (SR2) and (SR1) in the definition of IAE, Definition 1. As shown in the proof of
Proposition 2, for each k ∈ Ni (g ), x∗

i k must solve the problem:

max
xi k∈[0,1]

φi k (xi k ).

Now, since the cost of information acquisition function c : [0,1] →R+, the definition of function
φi k , for k ∈ Ni (g ) given in expression (27), becomes

φi k (xi k ) :=
[

(1− r )+ 2r

n −1

∑
j∈Nk (g )\{i }

x2
j k

]
σ2x2

i k − c(xi k )

−
[

(1− r )+ r

n −1

∑
j∈Nk (g )\{i }

x2
j k

]
σ2.

From the assumptions c ′(0) = 0 and c ′(1) > 2σ2(1+ r ), it follows that x∗
i k ∈ (0,1) for each k ∈

Ni (g ). Furthermore, from the assumption c ′′(x) > 2σ2(1+ r ) for each x ∈ [0,1], one obtains
that the optimal information acquisition choice of agent i with respect to each of his neighbors
k ∈ Ni (g ) is characterized by the first order condition:

c ′(x∗
i k )

x∗
i k

= 2σ2
[

(1− r )+ 2r

n −1

∑
j∈Nk (g )\{i }

(x∗
j k )2

]
.

The result follows since we considered a generic agent i ∈ N . 2
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